zoukankan      html  css  js  c++  java
  • CF1096G.Lucky Tickets[DP+卷积+多项式求幂] Educational Codeforces Round 57

    给定一个偶数长度n和字符集(0..9中的一些数字) 问有多少个串的前 (frac{n}{2}) 位的位数和跟后 (frac{n}{2}) 位相等

    [fleft( i,j ight) ext{表示}i ext{个数的和是}j ext{的方案数} \ ext{答案是}sum_y{fleft( frac{n}{2},y ight)}^2 ext{(前半部分和后半部分都是}sum_y{fleft( frac{n}{2},y ight)} ext{)} \ ext{所以只需要考虑怎么求}f \ fleft( x+ ext{1,}y ight) =sum_{i=0}^9{fleft( x,y-i ight)} \ ext{可以把上面的柿子补成卷积形式} \ ext{令}H=fleft( x+1 ight) ext{,}F=fleft( x ight) ext{,}Hleft( y ight) ext{表示的就是}fleft( x+ ext{1,}y ight) ext{,}F ext{同理} \ Hleft( k ight) =sum_{i=0}^{min left( k,9 ight)}{Fleft( i ight)}ast Gleft( k-i ight) \ ext{即}fleft( x+1 ight) left( k ight) =sum_{i=0}^{min left( k,9 ight)}{fleft( x ight) left( i ight)}ast Gleft( k-i ight) \ ext{比较容易发现没有字符集限制的情况下}G=1 \ ext{有限制的时候}G=sum_{i=0}^9{a_ix^i} ext{,}a_i ext{表示}i ext{是否在允许的字符集中,}x ext{没有实际意义} \ ext{所以要做的就是求出}Gleft( x ight) ^{frac{n}{2}} ext{然后统计每一项系数的平方和} ]

    贴个Tutorial里的代码

    #include<bits/stdc++.h>
    
    using namespace std;
    
    const int LOGN = 21;
    const int N = (1 << LOGN);
    const int MOD = 998244353;
    const int g = 3;
    
    #define forn(i, n) for(int i = 0; i < int(n); i++)
    
    inline int mul(int a, int b)
    {
    	return (a * 1ll * b) % MOD;
    }
    
    inline int norm(int a) 
    {
    	while(a >= MOD)
    		a -= MOD;
    	while(a < 0)
    		a += MOD;
    	return a;
    }
    
    inline int binPow(int a, int k) 
    {
    	int ans = 1;
    	while(k > 0) 
    	{
    		if(k & 1)
    			ans = mul(ans, a);
    		a = mul(a, a);
    		k >>= 1;
    	}
    	return ans;
    }
    
    inline int inv(int a) 
    {
    	return binPow(a, MOD - 2);
    }
    
    vector<int> w[LOGN];
    vector<int> iw[LOGN];
    vector<int> rv[LOGN];
    
    void precalc() 
    {
    	int wb = binPow(g, (MOD - 1) / (1 << LOGN));
    	
    	for(int st = 0; st < LOGN; st++) 
    	{
    		w[st].assign(1 << st, 1);
    		iw[st].assign(1 << st, 1);
    		
    		int bw = binPow(wb, 1 << (LOGN - st - 1));
    		int ibw = inv(bw);
    		
    		int cw = 1;
    		int icw = 1;
    		
    		for(int k = 0; k < (1 << st); k++) 
    		{
    			w[st][k] = cw;
    			iw[st][k] = icw;
    			
    			cw = mul(cw, bw);
    			icw = mul(icw, ibw);
    		}
    		
    		rv[st].assign(1 << st, 0);
    		
    		if(st == 0) 
    		{
    			rv[st][0] = 0;
    			continue;
    		}
    		int h = (1 << (st - 1));
    		for(int k = 0; k < (1 << st); k++)
    			rv[st][k] = (rv[st - 1][k & (h - 1)] << 1) | (k >= h);
    	}
    }
    
    inline void fft(int a[N], int n, int ln, bool inverse) 
    {	
    	for(int i = 0; i < n; i++) 
    	{
    		int ni = rv[ln][i];
    		if(i < ni)
    			swap(a[i], a[ni]);
    	}
    	
    	for(int st = 0; (1 << st) < n; st++) 
    	{
    		int len = (1 << st);
    		for(int k = 0; k < n; k += (len << 1)) 
    		{
    			for(int pos = k; pos < k + len; pos++) 
    			{
    				int l = a[pos];
    				int r = mul(a[pos + len], (inverse ? iw[st][pos - k] : w[st][pos - k]));
    				
    				a[pos] = norm(l + r);
    				a[pos + len] = norm(l - r);
    			}
    		}
    	}
    	
    	if(inverse) 
    	{
    		int in = inv(n);
    		for(int i = 0; i < n; i++)
    			a[i] = mul(a[i], in);
    	}
    }
    
    int aa[N], bb[N], cc[N];
    
    inline void multiply(int a[N], int sza, int b[N], int szb, int c[N], int &szc) 
    {
    	int n = 1, ln = 0;
    	while(n < (sza + szb))
    		n <<= 1, ln++;
    	for(int i = 0; i < n; i++)
    		aa[i] = (i < sza ? a[i] : 0);
    	for(int i = 0; i < n; i++)
    		bb[i] = (i < szb ? b[i] : 0);
    		
    	fft(aa, n, ln, false);
    	fft(bb, n, ln, false);
    	
    	for(int i = 0; i < n; i++)
    		cc[i] = mul(aa[i], bb[i]);
    		
    	fft(cc, n, ln, true);
    	
    	szc = n;
    	for(int i = 0; i < n; i++)
    		c[i] = cc[i];
    }
    
    vector<int> T[N];
    
    int a[N];
    int b[N];
    int c[N];
    
    #define sz(a) (int(a.size()))
    
    int main()
    {
    	precalc();
    	int n, k;
    	scanf("%d %d", &n, &k);
    	for(int i = 0; i < k; i++)
    	{
    	    int x;
    	    scanf("%d", &x);
    	    a[x] = 1;
    	}
    	int nn = 1, ln = 0;
    	int nw = (n * 5) + 1;
    	while(nn < nw)
    	{
    		nn *= 2;
    		ln++;
    	}
    	fft(a, nn, ln, false);
    	forn(i, nn)
    		a[i] = binPow(a[i], n / 2);
    	fft(a, nn, ln, true);
    	int ans = 0;
    	forn(i, nn)
    		ans = norm(ans + binPow(a[i], 2));
    	printf("%d
    ", ans);
    	return 0;	
    }
    
  • 相关阅读:
    [Docker] redis 全配置
    Dubbo的负载均衡策略&容错策略
    Dubbo部分知识点总结
    如何win10 上访问虚拟机(linux)上redis方法
    Linux_centOS_5.7_64下如何安装jdk1.8&mysql
    java高级&资深&专家面试题-行走江湖必备-持续更新ing
    springCloud微服务调用失败【CannotGetJdbcConnectionException: Failed to obtain JDBC Connection】
    synchronized、volatile区别、synchronized锁粒度、模拟死锁场景、原子性与可见性
    ThreadLocal什么时候会出现OOM的情况?为什么?
    volatile、ThreadLocal的使用场景和原理
  • 原文地址:https://www.cnblogs.com/storz/p/10229440.html
Copyright © 2011-2022 走看看