zoukankan      html  css  js  c++  java
  • 2017 CCPC 哈尔滨站 HDU 6242

    Geometry Problem

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)
    Total Submission(s): 1091    Accepted Submission(s): 208
    Special Judge


    Problem Description
    Alice is interesting in computation geometry problem recently. She found a interesting problem and solved it easily. Now she will give this problem to you :

    You are given N distinct points (Xi,Yi) on the two-dimensional plane. Your task is to find a point P and a real number R, such that for at least N2 given points, their distance to point P is equal to R.
     
    Input
    The first line is the number of test cases.

    For each test case, the first line contains one positive number N(1N105).

    The following N lines describe the points. Each line contains two real numbers Xi and Yi (0|Xi|,|Yi|103) indicating one give point. It's guaranteed that Npoints are distinct.
     
    Output
    For each test case, output a single line with three real numbers XP,YP,R, where (XP,YP) is the coordinate of required point PThree real numbers you output should satisfy 0|XP|,|YP|,R109.

    It is guaranteed that there exists at least one solution satisfying all conditions. And if there are different solutions, print any one of them. The judge will regard two point's distance as R if it is within an absolute error of 103 of R.
     
    Sample Input
    1
    7
    1 1
    1 0
    1 -1
    0 1
    -1 1
    0 -1
    -1 0
     
    Sample Output
    0 0 1

      题意  给出n个点 确定一个圆的圆心和半径  使得至少n/2个点(向上取整)在该圆上 对于每组样例至少有一个解

    解析 我们知道  在n个点中每个点在圆上的概率都为0.5  三个不共线的点确定一个外接圆  我们随机取三个点 这三个点的外接圆满足条件的概率为0.5*0.5*0.5=0.125

    每次随机消耗的时间复杂度为1e5  枚举1秒内可以100 次   基本可以得到答案

    AC代码

     1 #include <cstdio>
     2 #include <cmath>
     3 #include <cstring>
     4 #include <cstdlib>
     5 #include <iostream>
     6 #include <sstream>
     7 #include <algorithm>
     8 #include <string>
     9 #include <queue>
    10 #include <vector>
    11 using namespace std;
    12 const int maxn= 1e5+10;
    13 const double eps= 1e-6;
    14 const int inf = 0x3f3f3f3f;
    15 typedef long long ll;
    16 struct point
    17 {
    18     double x,y;
    19 }a[maxn];
    20 int n;
    21 double dis(point a,point b)   //两点间距离
    22 {
    23     return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
    24 }
    25 bool waijie(point p1,point p2,point p3,point &ans)   //引用修改圆心的值
    26 {
    27     if(fabs((p3.y-p2.y)*(p2.x-p1.x)-(p2.y-p1.y)*(p3.x-p2.x))<=eps)return false;  //三点共线 没有外接圆
    28     double Bx = p2.x - p1.x, By = p2.y - p1.y;            //外接圆板子
    29     double Cx = p3.x - p1.x, Cy = p3.y - p1.y;
    30     double D = 2 * (Bx * Cy - By * Cx);
    31     double cx = (Cy * (Bx * Bx + By * By) - By * (Cx * Cx + Cy * Cy)) / D + p1.x;
    32     double cy = (Bx * (Cx * Cx + Cy * Cy) - Cx * (Bx * Bx + By * By)) / D + p1.y;
    33     ans.x=cx,ans.y=cy;
    34     return true;
    35 }
    36 bool check(point mid,double d)     //检查是否有n/2个点在外接圆上
    37 {
    38     int ans=0;
    39     for(int i=1;i<=n;i++)
    40     {
    41         if(fabs(dis(a[i],mid)-d)<=eps)
    42             ans++;
    43         if((ans+(n-i))*2<n)       //简单优化一下 如果还未判断的点的数量加上已经满足条件的点的数量小于n/2 false
    44             return false;
    45     }
    46     if(ans*2>=n)
    47         return true;
    48     return false;
    49 }
    50 int main()
    51 {
    52     int t;
    53     scanf("%d",&t);
    54     while(t--)
    55     {
    56         scanf("%d",&n);
    57         for(int i=1;i<=n;i++)
    58             scanf("%lf%lf",&a[i].x,&a[i].y);
    59         if(n<=2)                                   //n小于等于4特判
    60         {
    61             printf("%lf %lf %lf
    ",a[1].x,a[1].y,0.0);
    62             continue;
    63         }
    64         else if(n<=4)
    65         {
    66             printf("%lf %lf %lf
    ",(a[1].x+a[2].x)/2,(a[1].y+a[2].y)/2,dis(a[1],a[2])/2);
    67             continue;
    68         }
    69         while(true)
    70         {
    71             point aa=a[rand()%n+1],bb=a[rand()%n+1],cc=a[rand()%n+1];   //随机产生3个点
    72             point xin;
    73             if(!waijie(aa,bb,cc,xin))
    74                 continue;
    75             double r=dis(aa,xin);
    76             if(check(xin,r))
    77             {
    78 //                printf("%lf %lf
    ",aa.x,aa.y);
    79 //                printf("%lf %lf
    ",bb.x,bb.y);
    80 //                printf("%lf %lf
    ",cc.x,cc.y);
    81                 printf("%lf %lf %lf
    ",xin.x,xin.y,r);
    82                 break;
    83             }
    84         }
    85     }
    86     return 0;
    87 }
  • 相关阅读:
    SQL server 统计数据库表数量和列出所有表名称
    mybatis 模糊查询 like的三种方式
    jquery 实现按回车键登录功能的写法
    js 各种事件 如:点击事件、失去焦点、键盘事件等
    ssm框架中从controller传值给jsp的方式
    [GDOI2019]小说
    洛谷5113
    2020.9.26模拟总结
    [IOI2015]分组
    9.19 总结
  • 原文地址:https://www.cnblogs.com/stranger-/p/7852955.html
Copyright © 2011-2022 走看看