Geometry Problem
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Others)
Total Submission(s): 1091 Accepted Submission(s): 208
Special Judge
Problem Description
Alice is interesting in computation geometry problem recently. She found a interesting problem and solved it easily. Now she will give this problem to you :
You are given N distinct points (Xi,Yi) on the two-dimensional plane. Your task is to find a point P and a real number R, such that for at least ⌈N2⌉ given points, their distance to point P is equal to R.
You are given N distinct points (Xi,Yi) on the two-dimensional plane. Your task is to find a point P and a real number R, such that for at least ⌈N2⌉ given points, their distance to point P is equal to R.
Input
The first line is the number of test cases.
For each test case, the first line contains one positive number N(1≤N≤105).
The following N lines describe the points. Each line contains two real numbers Xi and Yi (0≤|Xi|,|Yi|≤103) indicating one give point. It's guaranteed that Npoints are distinct.
For each test case, the first line contains one positive number N(1≤N≤105).
The following N lines describe the points. Each line contains two real numbers Xi and Yi (0≤|Xi|,|Yi|≤103) indicating one give point. It's guaranteed that Npoints are distinct.
Output
For each test case, output a single line with three real numbers XP,YP,R, where (XP,YP) is the coordinate of required point P. Three real numbers you output should satisfy 0≤|XP|,|YP|,R≤109.
It is guaranteed that there exists at least one solution satisfying all conditions. And if there are different solutions, print any one of them. The judge will regard two point's distance as R if it is within an absolute error of 10−3 of R.
It is guaranteed that there exists at least one solution satisfying all conditions. And if there are different solutions, print any one of them. The judge will regard two point's distance as R if it is within an absolute error of 10−3 of R.
Sample Input
1
7
1 1
1 0
1 -1
0 1
-1 1
0 -1
-1 0
Sample Output
0 0 1
题意 给出n个点 确定一个圆的圆心和半径 使得至少n/2个点(向上取整)在该圆上 对于每组样例至少有一个解
解析 我们知道 在n个点中每个点在圆上的概率都为0.5 三个不共线的点确定一个外接圆 我们随机取三个点 这三个点的外接圆满足条件的概率为0.5*0.5*0.5=0.125
每次随机消耗的时间复杂度为1e5 枚举1秒内可以100 次 基本可以得到答案
AC代码
1 #include <cstdio> 2 #include <cmath> 3 #include <cstring> 4 #include <cstdlib> 5 #include <iostream> 6 #include <sstream> 7 #include <algorithm> 8 #include <string> 9 #include <queue> 10 #include <vector> 11 using namespace std; 12 const int maxn= 1e5+10; 13 const double eps= 1e-6; 14 const int inf = 0x3f3f3f3f; 15 typedef long long ll; 16 struct point 17 { 18 double x,y; 19 }a[maxn]; 20 int n; 21 double dis(point a,point b) //两点间距离 22 { 23 return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y)); 24 } 25 bool waijie(point p1,point p2,point p3,point &ans) //引用修改圆心的值 26 { 27 if(fabs((p3.y-p2.y)*(p2.x-p1.x)-(p2.y-p1.y)*(p3.x-p2.x))<=eps)return false; //三点共线 没有外接圆 28 double Bx = p2.x - p1.x, By = p2.y - p1.y; //外接圆板子 29 double Cx = p3.x - p1.x, Cy = p3.y - p1.y; 30 double D = 2 * (Bx * Cy - By * Cx); 31 double cx = (Cy * (Bx * Bx + By * By) - By * (Cx * Cx + Cy * Cy)) / D + p1.x; 32 double cy = (Bx * (Cx * Cx + Cy * Cy) - Cx * (Bx * Bx + By * By)) / D + p1.y; 33 ans.x=cx,ans.y=cy; 34 return true; 35 } 36 bool check(point mid,double d) //检查是否有n/2个点在外接圆上 37 { 38 int ans=0; 39 for(int i=1;i<=n;i++) 40 { 41 if(fabs(dis(a[i],mid)-d)<=eps) 42 ans++; 43 if((ans+(n-i))*2<n) //简单优化一下 如果还未判断的点的数量加上已经满足条件的点的数量小于n/2 false 44 return false; 45 } 46 if(ans*2>=n) 47 return true; 48 return false; 49 } 50 int main() 51 { 52 int t; 53 scanf("%d",&t); 54 while(t--) 55 { 56 scanf("%d",&n); 57 for(int i=1;i<=n;i++) 58 scanf("%lf%lf",&a[i].x,&a[i].y); 59 if(n<=2) //n小于等于4特判 60 { 61 printf("%lf %lf %lf ",a[1].x,a[1].y,0.0); 62 continue; 63 } 64 else if(n<=4) 65 { 66 printf("%lf %lf %lf ",(a[1].x+a[2].x)/2,(a[1].y+a[2].y)/2,dis(a[1],a[2])/2); 67 continue; 68 } 69 while(true) 70 { 71 point aa=a[rand()%n+1],bb=a[rand()%n+1],cc=a[rand()%n+1]; //随机产生3个点 72 point xin; 73 if(!waijie(aa,bb,cc,xin)) 74 continue; 75 double r=dis(aa,xin); 76 if(check(xin,r)) 77 { 78 // printf("%lf %lf ",aa.x,aa.y); 79 // printf("%lf %lf ",bb.x,bb.y); 80 // printf("%lf %lf ",cc.x,cc.y); 81 printf("%lf %lf %lf ",xin.x,xin.y,r); 82 break; 83 } 84 } 85 } 86 return 0; 87 }