zoukankan      html  css  js  c++  java
  • 2017 ECJTU ACM程序设计竞赛 矩阵快速幂+二分

    矩阵

    Time Limit : 3000/1000ms (Java/Other)   Memory Limit : 65535/32768K (Java/Other)
    Total Submission(s) : 7   Accepted Submission(s) : 4

    Font: Times New Roman | Verdana | Georgia

    Font Size: ← →

    Problem Description

    假设你有一个矩阵,有这样的运算A^(n+1) = A^(n)*A (*代表矩阵乘法)
    现在已知一个n*n矩阵A,S = A+A^2+A^3+...+A^k,输出S,因为每一个元素太大了,输出的每个元素模10

    Input

    先输入一个T(T<=10),每组一个n,k(1<=n<=30, k<=1000000)

    Output

    输出一个矩阵,每个元素模10(行末尾没有多余空格)

    Sample Input

    1
    3 2
    0 2 0
    0 0 2
    0 0 0

    Sample Output

    0 2 4
    0 0 2
    0 0 0

    矩阵快速幂 + 等比数列二分求和
    AC
     1 #include <cstdio>
     2 #include <cmath>
     3 #include <cstring>
     4 #include <cstdlib>
     5 #include <iostream>
     6 #include <sstream>
     7 #include <algorithm>
     8 #include <string>
     9 #include <queue>
    10 #include <vector>
    11 using namespace std;
    12 const int maxn= 1e5+10;
    13 const double eps= 1e-6;
    14 const int inf = 0x3f3f3f3f;
    15 const int mod =10;
    16 typedef long long ll;
    17 int n,m;
    18 struct matrix
    19 {
    20     int m[35][35];
    21     matrix()
    22     {
    23         memset(m,0,sizeof(m));
    24     }
    25 };
    26 matrix operator *(const matrix &a,const matrix &b)
    27 {
    28     matrix c;
    29     for(int i=1;i<=n;i++)
    30         for(int j=1;j<=n;j++)
    31         {
    32             c.m[i][j]=0;
    33             for(int k=1;k<=n;k++)
    34                 c.m[i][j]=(c.m[i][j]+a.m[i][k]*b.m[k][j])%mod;
    35         }
    36         return c;
    37 }
    38 matrix quick(matrix base,int pow)
    39 {
    40     matrix a;
    41     for(int i=1;i<=n;i++) a.m[i][i]=1;
    42     while(pow)
    43     {
    44         if(pow&1) a=a*base;
    45         base=base*base;
    46         pow>>=1;
    47     }
    48     return a;
    49 }
    50 matrix sum(matrix a,matrix b)
    51 {
    52     for(int j=1;j<=n;j++)
    53         for(int k=1;k<=n;k++)
    54             a.m[j][k]=(a.m[j][k]+b.m[j][k])%mod;
    55     return a;
    56 }
    57 matrix solve(matrix x,int y)
    58 {
    59     matrix a,s;
    60     if(y==1)
    61         return x;
    62     a=solve(x,y/2);
    63     s=sum(a,a*quick(x,y/2));
    64     if(y&1)
    65         s=sum(s,quick(x,y));
    66     return s;
    67 }
    68 int main()
    69 {
    70     int t;
    71     scanf("%d",&t);
    72     while(t--)
    73     {
    74         scanf("%d %d",&n,&m);
    75         matrix  a;
    76         for(int i=1;i<=n;i++)
    77             for(int j=1;j<=n;j++)
    78                 scanf("%d",&a.m[i][j]);
    79         matrix ans=solve(a,m);
    80         for(int i=1;i<=n;i++)
    81         {
    82             for(int j=1;j<=n;j++)
    83             {
    84                 if(j==n)
    85                     printf("%d
    ",ans.m[i][j]);
    86                 else
    87                     printf("%d ",ans.m[i][j]);
    88             }
    89         }
    90 
    91     }
    92 }
  • 相关阅读:
    8.16集训
    8.15集训
    Educational Codeforces Round 97 (Rated for Div. 2)
    Codeforces Round #679 (Div. 2, based on Technocup 2021 Elimination Round 1)
    尺取法
    Codeforces Round #677 (Div. 3)
    单调队列
    dfs序
    离散化
    [kuangbin带你飞]专题七 线段树
  • 原文地址:https://www.cnblogs.com/stranger-/p/7875412.html
Copyright © 2011-2022 走看看