参考博客 https://www.cnblogs.com/tham/p/8038828.html
例题 poj 2823
Sliding Window
Time Limit: 12000MS | Memory Limit: 65536K | |
Total Submissions: 67137 | Accepted: 19061 | |
Case Time Limit: 5000MS |
Description
An array of size n ≤ 106 is given to you. There is a sliding window of size k which is moving from the very left of the array to the very right. You can only see the k numbers in the window. Each time the sliding window moves rightwards by one position. Following is an example:
The array is [1 3 -1 -3 5 3 6 7], and k is 3.
The array is [1 3 -1 -3 5 3 6 7], and k is 3.
Window position | Minimum value | Maximum value |
---|---|---|
[1 3 -1] -3 5 3 6 7 | -1 | 3 |
1 [3 -1 -3] 5 3 6 7 | -3 | 3 |
1 3 [-1 -3 5] 3 6 7 | -3 | 5 |
1 3 -1 [-3 5 3] 6 7 | -3 | 5 |
1 3 -1 -3 [5 3 6] 7 | 3 | 6 |
1 3 -1 -3 5 [3 6 7] | 3 | 7 |
Your task is to determine the maximum and minimum values in the sliding window at each position.
Input
The input consists of two lines. The first line contains two integers n and k which are the lengths of the array and the sliding window. There are n integers in the second line.
Output
There are two lines in the output. The first line gives the minimum values in the window at each position, from left to right, respectively. The second line gives the maximum values.
Sample Input
8 3 1 3 -1 -3 5 3 6 7
Sample Output
-1 -3 -3 -3 3 3 3 3 5 5 6 7
题意 给出一个序列 n个数 求每个长度为k的子串的最大值和最小值
解析 如果用尺取写的话 失匹的话就要花费o(k)的复杂度去维护最大值 最小值 总时间复杂度o(n*k) 数据卡的死就肯定超时
我们发现维护最大最最小值的时候 发现有很多重复的比较 所以我们可以维护一个最值数组 使它严格单调 这样直接取第一个元素就好了(单调队列)。
AC代码(c++)
1 #include <stdio.h> 2 #include <math.h> 3 #include <string.h> 4 #include <stdlib.h> 5 #include <iostream> 6 #include <sstream> 7 #include <algorithm> 8 #include <string> 9 #include <queue> 10 #include <map> 11 #include <vector> 12 using namespace std; 13 const int maxn = 1e6+50; 14 const int inf = 0x3f3f3f3f,mod = 998244353; 15 const double epx = 1e-10; 16 typedef long long ll; 17 struct node 18 { 19 int x,y; //x值 y下标 20 }v[maxn]; 21 int a[maxn],mn[maxn],mx[maxn]; 22 int n,m; 23 void getmin() 24 { 25 int head=1,tail=0; 26 for(int i=1;i<m;i++) 27 { 28 while(head<=tail&&a[i]<=v[tail].x)tail--; 29 v[++tail].x=a[i],v[tail].y=i; 30 } 31 for(int j=m;j<=n;j++) 32 { 33 while(head<=tail&&a[j]<=v[tail].x)tail--; 34 v[++tail].x=a[j],v[tail].y=j; 35 while(j-v[head].y>=m)head++; 36 mn[j]=v[head].x; 37 } 38 } 39 void getmax() 40 { 41 int head=1,tail=0; 42 for(int i=1;i<m;i++) 43 { 44 while(head<=tail&&a[i]>=v[tail].x)tail--; 45 v[++tail].x=a[i],v[tail].y=i; 46 } 47 for(int j=m;j<=n;j++) 48 { 49 while(head<=tail&&a[j]>=v[tail].x)tail--; 50 v[++tail].x=a[j],v[tail].y=j; 51 while(j-v[head].y>=m)head++; 52 mx[j]=v[head].x; 53 } 54 } 55 int main() 56 { 57 scanf("%d %d",&n,&m); 58 for(int i=1;i<=n;i++) 59 scanf("%d",&a[i]); 60 getmax(); 61 getmin(); 62 for(int i=m;i<=n;i++) 63 { 64 printf(i!=n?"%d ":"%d ",mn[i]); 65 } 66 for(int i=m;i<=n;i++) 67 { 68 printf(i!=n?"%d ":"%d ",mx[i]); 69 } 70 }