zoukankan      html  css  js  c++  java
  • HDU 5883 欧拉路径异或值最大 水题

    The Best Path

    Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)
    Total Submission(s): 2104    Accepted Submission(s): 841


    Problem Description
    Alice is planning her travel route in a beautiful valley. In this valley, there are N lakes, and M rivers linking these lakes. Alice wants to start her trip from one lake, and enjoys the landscape by boat. That means she need to set up a path which go through every river exactly once. In addition, Alice has a specific number (a1,a2,...,an) for each lake. If the path she finds is P0P1...Pt, the lucky number of this trip would be aP0XORaP1XOR...XORaPt. She want to make this number as large as possible. Can you help her?
     
    Input
    The first line of input contains an integer t, the number of test cases. t test cases follow.

    For each test case, in the first line there are two positive integers N (N100000) and M (M500000), as described above. The i-th line of the next N lines contains an integer ai(i,0ai10000) representing the number of the i-th lake.

    The i-th line of the next M lines contains two integers ui and vi representing the i-th river between the ui-th lake and vi-th lake. It is possible that ui=vi.
     
    Output
    For each test cases, output the largest lucky number. If it dose not have any path, output "Impossible".
     
    Sample Input
    2
    3 2
    3
    4
    5
    1 2
    2 3
    4 3
    1
    2
    3
    4
    1 2
    2 3
    2 4
     
    Sample Output
    2
    Impossible

    解析 先判断图是否只有一个连通块   然后判断是否存在欧拉回路或者路径  欧拉路径每个点经过  (度数+1)/2 次  欧拉回路也一样  但是起点多走一次   每个点都可以作为起点

    所以直接枚举取最大值就好了。

    AC代码     

     1 #include<bits/stdc++.h>
     2 using namespace std;
     3 const int maxn=1e5+10;
     4 int a[maxn],du[maxn],par[maxn];
     5 int _find(int x)
     6 {
     7     return x==par[x]?x:par[x]=_find(par[x]);
     8 }
     9 void unio(int a,int b)
    10 {
    11     int ra=_find(a);
    12     int rb=_find(b);
    13     if(ra!=rb) par[rb]=ra;
    14 }
    15 int main()
    16 {
    17     int t;
    18     scanf("%d",&t);
    19     while(t--)
    20     {
    21         int n,m;
    22         scanf("%d%d",&n,&m);
    23         for(int i=1;i<=n;i++)
    24         {
    25             par[i]=i;du[i]=0;
    26             scanf("%d",&a[i]);
    27         }
    28         for(int i=0;i<m;i++)
    29         {
    30             int u,v;
    31             scanf("%d%d",&u,&v);
    32             unio(u,v);
    33             du[u]++,du[v]++;
    34         }
    35         int sum=0,flag=0;
    36         for(int i=1;i<=n;i++)
    37         {
    38             if(du[i]&1)sum++;
    39             if(par[i]==i)flag++;
    40         }
    41         if(sum>2||flag>1)
    42             printf("Impossible
    ");
    43         else
    44         {
    45             int ans=0;
    46             for(int i=1;i<=n;i++)
    47             {
    48                 int temp=(du[i]+1)/2;
    49                 while(temp)
    50                     ans=ans^a[i],temp--;
    51             }
    52             if(sum==0)
    53             {
    54                 int temp=ans;
    55                 for(int i=1;i<=n;i++)
    56                     ans=max(temp^a[i],ans);
    57             }
    58             printf("%d
    ",ans);
    59         }
    60     }
    61 }
  • 相关阅读:
    07_控制线程_join_线程插队
    06_线程的生命周期及状态
    05_线程间通信
    04_线程的创建和启动_使用Callable和Future的方式
    03_线程的创建和启动_实现Runnable接口方式
    02_线程的创建和启动_继承Thread方式
    01_基础知识
    07_XPath_02_常用语法
    二叉树分层遍历
    [LeetCode] Binary Tree Level Order Traversal II
  • 原文地址:https://www.cnblogs.com/stranger-/p/9383171.html
Copyright © 2011-2022 走看看