zoukankan      html  css  js  c++  java
  • HDU 6333 莫队+组合数

    Problem B. Harvest of Apples

    Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)
    Total Submission(s): 2397    Accepted Submission(s): 934


    Problem Description
    There are n apples on a tree, numbered from 1 to n.
    Count the number of ways to pick at most m apples.
     
    Input
    The first line of the input contains an integer T (1T105) denoting the number of test cases.
    Each test case consists of one line with two integers n,m (1mn105).
     
    Output
    For each test case, print an integer representing the number of ways modulo 109+7.
     
    Sample Input
    2
    5 2
    1000 500
     
    Sample Output
    16
    924129523
     
    Source

    解析  不难发现S(n,m)也满足左上角加右上角(杨辉三角)  所以根据公式可以O(1)得到S(n-1,m),S(n+1,m),S(n,m-1),S(n,m+1) 可以看做区间的转移 从而套用莫队实现求解

    AC代码  

    #include <bits/stdc++.h>
    #define pb push_back
    #define mp make_pair
    #define fi first
    #define se second
    #define all(a) (a).begin(), (a).end()
    #define fillchar(a, x) memset(a, x, sizeof(a))
    #define huan prllf("
    ");
    #define debug(a,b) cout<<a<<" "<<b<<" ";
    using namespace std;
    typedef long long ll;
    const ll maxn=1e5+10,inf=0x3f3f3f3f;
    const ll mod=1e9+7;
    ll gcd(ll a,ll b){ return b?gcd(b,a%b):a;}
    ll fac[maxn],inv[maxn],ans[maxn];
    ll chunk;
    struct node
    {
        ll l,r,id,chunk;
    }q[maxn];
    bool cmp(node a,node b)
    {
        if(a.chunk!=b.chunk)
            return a.l<b.l;
        return a.r<b.r;
    }
    void init()
    {
        fac[0]=fac[1]=1;
        inv[0]=inv[1]=1;
        for(ll i=2;i<maxn;i++)
        {
            fac[i]=fac[i-1]*i%mod;
            inv[i]=1ll*(mod-mod/i)*inv[mod%i]%mod;
        }
        for(ll i=2;i<maxn;i++)         //不可以写成一个for inv还会用到
            inv[i]=inv[i-1]*inv[i]%mod;  //可以再开一个数组 写成一个for
    }
    ll C(ll x,ll y)
    {
        if(y>x) return 0;
        return fac[x]*inv[y]%mod*inv[x-y]%mod;
    }
    int main()
    {
        init();//预处理组合数逆元 从而O(1)获得组合数 实现转移
        ll t;
        chunk=sqrt(maxn);
        scanf("%lld",&t);
        for(ll i=1;i<=t;i++)
        {
            ll n,m;
            scanf("%lld%lld",&n,&m);
            q[i]=node{n,m,i,n/chunk+1};
        }
        sort(q+1,q+1+t,cmp);
        ll l=1,r=0,res=1;
        for(ll i=1;i<=t;i++)
        {
            while(l<q[i].l)
            {
                res=(res*2%mod-C(l,r)+mod)%mod;
                l++;
            }
            while(l>q[i].l)
            {
                l--;
                res=(res+C(l,r))%mod*inv[2]%mod;
            }
            while(r>q[i].r)
            {
                res=(res-C(l,r)+mod)%mod;
                r--;
            }
            while(r<q[i].r)
            {
                r++;
                res=(res+C(l,r))%mod;
            }
            ans[q[i].id]=res;
        }
        for(ll i=1;i<=t;i++)
            printf("%lld
    ",ans[i]);
        return 0;
    }
  • 相关阅读:
    电子邮件的工作原理
    常用邮箱服务器地址端口
    wpf \silverlight 保存控件为图片
    GIS理论(墨卡托投影、地理坐标系、地面分辨率、地图比例尺、Bing Maps Tile System)【转载】
    Visifire图表控件官网地址
    Ado方式导入excel混用数据类型引起数据缺失问题解决方法
    c#日期时间的操作
    获得excel的sheet名字
    正则表达式验证可发短信的号码,如手机号和小灵通号码(106+区号+号码)
    验证多行文本框输入长度的正则表达式
  • 原文地址:https://www.cnblogs.com/stranger-/p/9414187.html
Copyright © 2011-2022 走看看