zoukankan      html  css  js  c++  java
  • CodeForces 1312

    1312

    • (A题)

    测网速

    #include <bits/stdc++.h>
    using namespace std;
    const int N = 1e5 + 5;
    const int mod = 1e9 + 7;
    typedef long long ll;
    typedef unsigned long long ull;
    int a[N];
    int main()
    {
        int t;
        cin >> t;
        while (t--)
        {
            int n, m;
            cin >> n >> m;
            if (n % m == 0)
                cout << "YES" << endl;
            else
                cout << "NO" << endl;
        }
        return 0;
    }
    
    • (B题)

    (a_i) 从大到小排序即可,必然满足 (j - i ot= a_j - a_i) 因为 (j - i) 是正数,而 (a_j - a_i) 是负数

    #include <bits/stdc++.h>
    using namespace std;
    const int N = 1e5 + 5;
    const int mod = 1e9 + 7;
    typedef long long ll;
    typedef unsigned long long ull;
    ll a[N];
    int main()
    {
        int t;
        cin >> t;
        while (t--)
        {
            int n;
            cin >> n;
            for (int i = 1; i <= n; i++)
                cin >> a[i];
            sort(a + 1, a + n + 1);
            reverse(a + 1, a + n + 1);
            for (int i = 1; i <= n; i++)
                cout << a[i] << " ";
            cout << endl;
        }
        return 0;
    }
    
    • C题

    没调出来,我 sb

    出现 (k^0,k^1,k^2...k^i) 时可以考虑 (k) 进制 (重要)

    那么就把所有的 (a_i) 转换成 (k) 进制,在相同位上出现基数的和如果超过 (1) 那么就不行,注意:(k) 进制全部的元素大小是 (0sim k - 1)

    #include <bits/stdc++.h>
    using namespace std;
    const int N = 1e5 + 5;
    const int mod = 1e9 + 7;
    typedef long long ll;
    typedef unsigned long long ull;
    ll a[N];
    vector<ll> v[N];
    ll k, n;
    map<int, int> mp;
    void solve(ll x, int pos)
    {
        while (x)
        {
            v[pos].push_back(x % k);
            x /= k;
        }
    }
    int main()
    {
        int t;
        cin >> t;
        while (t--)
        {
            mp.clear();
            cin >> n >> k;
            for (int i = 1; i <= n; i++)
            {
                cin >> a[i];
            }
            for (int i = 1; i <= n; i++)
                v[i].clear();
            int maxn = 0;
            for (int i = 1; i <= n; i++)
            {
                solve(a[i], i);
                maxn = max(maxn, (int)v[i].size());
            }
            for (int i = 1; i <= n; i++)
            {
                if ((int)v[i].size() <= maxn)
                {
                    int cnt = maxn - (int)v[i].size();
                    for (int j = 1; j <= cnt; j++)
                        v[i].push_back(0);
                    reverse(v[i].begin(), v[i].end());
                }
            }
            int flag = 0;
            for (int j = 0; j < maxn; j++)
            {
                int cnt = 0;
                for (int i = 1; i <= n; i++)
                {
                    cnt += v[i][j];
                }
                if (cnt > 1)
                    flag = 1;
            }
            if (flag)
                cout << "NO" << endl;
            else
                cout << "YES" << endl;
        }
        return 0;
    }
    /*
    5 2
    20 0 33 2 64
    20:0001 0100
     0:0000 0000
    33:0010 0001
     2:0000 0010
    64:0100 0000
    */
    
    • (D题)

    考虑构造题目要求:

    (1sim m) 个 数中取 (n - 1) 个不同的数出来,那么默认从小到大排序就是 (m_1,m_2,m_3...m_{n-1})

    (m) 个数中任取 (n -1) 个数是 (C_{m}^{n - 1})

    保持 (n - 1) 数中最大值 (m_{n - 1}) 不动,剩下的 (n - 2) 个数在最大值的左边满足上升的条件,任取一个在 (n - 2) 中的数作为相等的数放在右边,有 (n - 2) 种不同的选法,那么剩下的 (n - 3) 个数自由选择放在左边或者右边后可以自动拍个序,自然就满足了条件,对于某一个数放在左边或者右边有两种选法,那么就是 (2^{n - 3})

    所以 (C_{m}^{n - 1} imes (n - 2) imes2^{n - 3})

    #include <bits/stdc++.h>
    using namespace std;
    const int N = 1e5 + 5;
    const int p = 998244353;
    typedef long long ll;
    typedef unsigned long long ull;
    ll pow(ll a, ll b, ll m)
    {
        ll ans = 1;
        a %= m;
        while (b)
        {
            if (b & 1)
                ans = (ans % m) * (a % m) % m;
            b /= 2;
            a = (a % m) * (a % m) % m;
        }
        ans %= m;
        return ans;
    }
    ll inv(ll x, ll p) //x关于p的逆元,p为素数
    {
        return pow(x, p - 2, p);
    }
    ll C(ll n, ll m, ll p) //组合数C(n, m) % p
    {
        if (m > n)
            return 0;
        ll up = 1, down = 1; //分子分母;
        for (int i = n - m + 1; i <= n; i++)
            up = up * i % p;
        for (int i = 1; i <= m; i++)
            down = down * i % p;
        return up * inv(down, p) % p;
    }
    ll Lucas(ll n, ll m, ll p)
    {
        if (m == 0)
            return 1;
        return C(n % p, m % p, p) * Lucas(n / p, m / p, p) % p;
    }
    int main()
    {
        ll n,mx;
        cin >> n >> mx;
        if(n <= 2)
        {
            cout << 0 << endl;
            return 0;
        }
        ll ans = Lucas(mx, n - 1,p);   
        ans = ans * (n - 2) % p;
        ans = ans * pow(2, n - 3,p) % p;
        cout << ans % p << endl;
        return 0;
    }
    
    • (E题)待补 (DP)
  • 相关阅读:
    excel导入phpmyadmin
    Python 教程资源
    SAE部署Python-让云端自动运行Python代码
    python socket 超时设置 errno10054
    使用python一步一步搭建微信公众平台(一)
    PHP读取MySQL数据
    php连接mysql并读取数据
    php分页例子实现读取mysql数据分页显示
    51Nod1305 Pairwise Sum and Divide
    SPOJ SUBXOR
  • 原文地址:https://www.cnblogs.com/strategist-614/p/12492246.html
Copyright © 2011-2022 走看看