zoukankan      html  css  js  c++  java
  • [Swift]LeetCode295. 数据流的中位数 | Find Median from Data Stream

    ★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★
    ➤微信公众号:山青咏芝(shanqingyongzhi)
    ➤博客园地址:山青咏芝(https://www.cnblogs.com/strengthen/
    ➤GitHub地址:https://github.com/strengthen/LeetCode
    ➤原文地址:https://www.cnblogs.com/strengthen/p/10241288.html 
    ➤如果链接不是山青咏芝的博客园地址,则可能是爬取作者的文章。
    ➤原文已修改更新!强烈建议点击原文地址阅读!支持作者!支持原创!
    ★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★

    Median is the middle value in an ordered integer list. If the size of the list is even, there is no middle value. So the median is the mean of the two middle value.

    For example,

    [2,3,4], the median is 3

    [2,3], the median is (2 + 3) / 2 = 2.5

    Design a data structure that supports the following two operations:

    • void addNum(int num) - Add a integer number from the data stream to the data structure.
    • double findMedian() - Return the median of all elements so far.

    Example:

    addNum(1)
    addNum(2)
    findMedian() -> 1.5
    addNum(3) 
    findMedian() -> 2

    Follow up:

    1. If all integer numbers from the stream are between 0 and 100, how would you optimize it?
    2. If 99% of all integer numbers from the stream are between 0 and 100, how would you optimize it?

    中位数是有序列表中间的数。如果列表长度是偶数,中位数则是中间两个数的平均值。

    例如,

    [2,3,4] 的中位数是 3

    [2,3] 的中位数是 (2 + 3) / 2 = 2.5

    设计一个支持以下两种操作的数据结构:

    • void addNum(int num) - 从数据流中添加一个整数到数据结构中。
    • double findMedian() - 返回目前所有元素的中位数。

    示例:

    addNum(1)
    addNum(2)
    findMedian() -> 1.5
    addNum(3) 
    findMedian() -> 2

    进阶:

    1. 如果数据流中所有整数都在 0 到 100 范围内,你将如何优化你的算法?
    2. 如果数据流中 99% 的整数都在 0 到 100 范围内,你将如何优化你的算法?

    736ms

     1 class MedianFinder {
     2     var nums : [Int]
     3     
     4     /** initialize your data structure here. */
     5     init() {
     6         nums = [Int]()
     7     }
     8     
     9     func addNum(_ num: Int) {
    10         if nums.isEmpty {
    11             nums.append(num)
    12             return
    13         }
    14         
    15         var left = 0
    16         var right = nums.count - 1
    17         while left <= right {
    18             let mid = (left + right) / 2
    19             if nums[mid] < num {
    20                 left = mid + 1
    21             }else if nums[mid] == num {
    22                 left = mid
    23                 break
    24             }else {
    25                 right = mid - 1
    26             }
    27         }
    28         
    29         nums.insert(num, at: left)        
    30     }
    31     
    32     func findMedian() -> Double {
    33         if nums.isEmpty {
    34             return 0
    35         }
    36         
    37         if nums.count % 2 == 1 {
    38             return Double(nums[nums.count / 2])
    39         }else {
    40             let r1 = nums[nums.count / 2]
    41             let r2 = nums[nums.count / 2 - 1]
    42             return Double(r1 + r2) / 2
    43         }
    44     }
    45 }
    46 
    47 /**
    48  * Your MedianFinder object will be instantiated and called as such:
    49  * let obj = MedianFinder()
    50  * obj.addNum(num)
    51  * let ret_2: Double = obj.findMedian()
    52  */

    1208ms

      1 class MedianFinder {
      2     //Holds the small part of the stream but track the largest one
      3     let maxQueue: PriorityQueue<Int>
      4     //Holds the larger part of the stream but track the smallest one
      5     let minQueue: PriorityQueue<Int>
      6     /** initialize your data structure here. */
      7     init() {
      8         maxQueue = PriorityQueue<Int>(priorityFunction:{ $0 > $1 })
      9         minQueue = PriorityQueue<Int>(priorityFunction:{ $0 < $1 })
     10     }
     11     
     12     func addNum(_ num: Int) {
     13         maxQueue.enqueue(num)
     14         if let num = maxQueue.dequeue() {
     15             minQueue.enqueue(num)
     16             if maxQueue.count < minQueue.count {
     17                 if let minNum = minQueue.dequeue() {
     18                     maxQueue.enqueue(minNum)
     19                 }
     20             }
     21         }
     22     }
     23     
     24     func findMedian() -> Double {
     25         if maxQueue.count == minQueue.count {
     26             return (Double(maxQueue.peek()!) + Double(minQueue.peek()!)) / 2
     27         } else {
     28             return Double(maxQueue.peek()!)
     29         }
     30     }
     31 }
     32 
     33 /**
     34  * Your MedianFinder object will be instantiated and called as such:
     35  * let obj = MedianFinder()
     36  * obj.addNum(num)
     37  * let ret_2: Double = obj.findMedian()
     38  */
     39  
     40 
     41 public class PriorityQueue<Element> {
     42     var elements: [Element]
     43     var priorityFunction: (Element, Element) -> Bool
     44     var count: Int { return elements.count }
     45     
     46     init(priorityFunction:@escaping (Element, Element) -> Bool) {
     47         self.elements = [Element]()
     48         self.priorityFunction = priorityFunction
     49     }
     50     
     51     func isHigherPriority(at index:Int,than secondIndex:Int) -> Bool {
     52         return self.priorityFunction(elements[index], elements[secondIndex])
     53     }
     54     
     55     func enqueue(_ element:Element) {
     56         elements.append(element)
     57         siftUp(index: elements.count - 1)
     58     }
     59     
     60     func dequeue() -> Element? {
     61         if elements.count == 0 {
     62             return nil
     63         }
     64         
     65         elements.swapAt(0, elements.count - 1)
     66         let element = elements.removeLast()
     67         siftDown(index: 0)
     68         return element
     69     }
     70     
     71     func peek() -> Element? {
     72         return elements.first
     73     }
     74     
     75     func siftUp(index:Int) {
     76         if index == 0 {
     77             return
     78         }
     79         
     80         let parent = parentIndex(for: index)
     81         if isHigherPriority(at: index, than: parent) {
     82             elements.swapAt(index, parent)
     83             siftUp(index: parent)
     84         }
     85     }
     86     
     87     func siftDown(index:Int) {
     88         var highIndex = index
     89         let leftIndex = leftChildIndex(for: index)
     90         let rightIndex = rightChildIndex(for: index)
     91         if leftIndex < count && isHigherPriority(at: leftIndex, than: index) {
     92             highIndex = leftIndex
     93         }
     94         if rightIndex < count && isHigherPriority(at: rightIndex, than: highIndex) {
     95             highIndex = rightIndex
     96         }
     97         if highIndex == index {
     98             return
     99         } else {
    100             elements.swapAt(highIndex, index)
    101             siftDown(index: highIndex)
    102         }
    103     }
    104     
    105     func parentIndex(for index:Int) -> Int {
    106         return (index - 1)/2
    107     }
    108     
    109     func leftChildIndex(for index:Int) -> Int {
    110         return index * 2 + 1
    111     }
    112     
    113     func rightChildIndex(for index:Int) -> Int {
    114         return index * 2 + 2
    115     }
    116 }
  • 相关阅读:
    visual c++ 动态链接库调用总结
    机器学习 Support Vector Machines 1
    机器学习 Generative Learning Algorithm (B)
    机器学习 线性回归
    机器学习 矩阵的基本运算
    OpenCV——百叶窗
    机器学习 Generative Learning Algorithm (A)
    OpenCV——非线性滤波器
    机器学习 Logistic Regression
    机器学习 从矩阵和概率的角度解释最小均方误差函数
  • 原文地址:https://www.cnblogs.com/strengthen/p/10241288.html
Copyright © 2011-2022 走看看