zoukankan      html  css  js  c++  java
  • [Swift]LeetCode329. 矩阵中的最长递增路径 | Longest Increasing Path in a Matrix

    ★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★
    ➤微信公众号:山青咏芝(shanqingyongzhi)
    ➤博客园地址:山青咏芝(https://www.cnblogs.com/strengthen/
    ➤GitHub地址:https://github.com/strengthen/LeetCode
    ➤原文地址:https://www.cnblogs.com/strengthen/p/10260831.html 
    ➤如果链接不是山青咏芝的博客园地址,则可能是爬取作者的文章。
    ➤原文已修改更新!强烈建议点击原文地址阅读!支持作者!支持原创!
    ★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★

    Given an integer matrix, find the length of the longest increasing path.

    From each cell, you can either move to four directions: left, right, up or down. You may NOT move diagonally or move outside of the boundary (i.e. wrap-around is not allowed).

    Example 1:

    Input: nums = 
    [
      [9,9,4],
      [6,6,8],
      [2,1,1]
    ] 
    Output: 4 
    Explanation: The longest increasing path is [1, 2, 6, 9].
    

    Example 2:

    Input: nums = 
    [
      [3,4,5],
      [3,2,6],
      [2,2,1]
    ] 
    Output: 4 
    Explanation: The longest increasing path is [3, 4, 5, 6]. Moving diagonally is not allowed.

    给定一个整数矩阵,找出最长递增路径的长度。

    对于每个单元格,你可以往上,下,左,右四个方向移动。 你不能在对角线方向上移动或移动到边界外(即不允许环绕)。

    示例 1:

    输入: nums = 
    [
      [9,9,4],
      [6,6,8],
      [2,1,1]
    ] 
    输出: 4 
    解释: 最长递增路径为 [1, 2, 6, 9]

    示例 2:

    输入: nums = 
    [
      [3,4,5],
      [3,2,6],
      [2,2,1]
    ] 
    输出: 4 
    解释: 最长递增路径是 [3, 4, 5, 6]。注意不允许在对角线方向上移动。

     284 ms
     1 class Solution {
     2    func longestIncreasingPath(_ matrix: [[Int]]) -> Int {
     3         
     4         if matrix.isEmpty || matrix[0].isEmpty {
     5             return 0
     6         }
     7         
     8         let m = matrix.count
     9         let n = matrix[0].count
    10         
    11         var counts = Array(repeating: Array(repeating: 0, count: n), count: m)
    12         var longest = 0
    13         
    14         for i in 0..<m {
    15             for j in 0..<n {
    16                 let c = longestHelp(matrix, &counts, i, j)
    17                 longest = max(longest, c)
    18             }
    19         }
    20         
    21         return longest
    22     }
    23     
    24     func longestHelp(_ matrix: [[Int]], _ counts : inout [[Int]], _ x : Int , _ y : Int) ->Int  {
    25         if counts[x][y] != 0 {
    26             return counts[x][y]
    27         }
    28         
    29         var res = 1
    30         if x > 0 && matrix[x-1][y] > matrix[x][y] {
    31             res = max(res, longestHelp(matrix, &counts, x-1, y) + 1)
    32         }
    33         if x < matrix.count-1 && matrix[x+1][y] > matrix[x][y] {
    34             res = max(res, longestHelp(matrix, &counts, x+1, y) + 1)
    35         }
    36         
    37         if y > 0 && matrix[x][y-1] > matrix[x][y] {
    38             res = max(res, longestHelp(matrix, &counts, x, y-1) + 1)
    39         }
    40         if y < matrix[0].count-1 && matrix[x][y+1] > matrix[x][y] {
    41             res = max(res, longestHelp(matrix, &counts, x, y+1) + 1)
    42         }
    43         
    44         counts[x][y] = res
    45         return res
    46     }
    47 }

    404ms

     1 class Solution {
     2     var dp: [[Int]] = []
     3     let dirs: [[Int]] = [[-1, 0], [0, -1], [1, 0], [0, 1]]
     4     func longestIncreasingPath(_ matrix: [[Int]]) -> Int {
     5         if matrix.count == 0 { return 0 }
     6         dp = [[Int]](repeating: [Int](repeating: -1, count: matrix[0].count), count: matrix.count)
     7         var res = 0
     8         for r in 0..<matrix.count {
     9             for c in 0..<matrix[0].count {
    10                 res = max(res, dfs(matrix, r, c))
    11             }
    12         }
    13         
    14         return res
    15     }
    16     
    17     private func dfs(_ matrix: [[Int]], _ r: Int, _ c: Int) -> Int {
    18         if self.dp[r][c] != -1 {
    19             return dp[r][c]
    20         }
    21         
    22         var res = 0
    23         for dir in dirs {
    24             let newr  = r+dir[0], newc =  c + dir[1]
    25             if newr >= 0 && newc >= 0 &&
    26                 newr < matrix.count && newc < matrix[0].count &&
    27                 matrix[newr][newc] > matrix[r][c] {
    28                     res = max(res, dfs(matrix, newr, newc))
    29                 }
    30             
    31         }
    32         dp[r][c] = res+1
    33         return res + 1
    34     }
    35 }
  • 相关阅读:
    java基础教程-流IO(五)
    java基础教程-常用类(四)
    java基础教程-容器(三)
    java基础教程-异常处理(二)
    java基础教程-面向对象(一)
    javascript DOM编程艺术(笔记)
    二十二、动态规划
    二十一、所有结点对最短路径问题(弗洛伊德算法)
    二十、单源最短路径(迪杰斯特拉算法)
    十九、最小生成树(普里姆算法)
  • 原文地址:https://www.cnblogs.com/strengthen/p/10260831.html
Copyright © 2011-2022 走看看