zoukankan      html  css  js  c++  java
  • [Swift]LeetCode576. 出界的路径数 | Out of Boundary Paths

    ★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★
    ➤微信公众号:山青咏芝(shanqingyongzhi)
    ➤博客园地址:山青咏芝(https://www.cnblogs.com/strengthen/
    ➤GitHub地址:https://github.com/strengthen/LeetCode
    ➤原文地址:https://www.cnblogs.com/strengthen/p/10420741.html 
    ➤如果链接不是山青咏芝的博客园地址,则可能是爬取作者的文章。
    ➤原文已修改更新!强烈建议点击原文地址阅读!支持作者!支持原创!
    ★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★

    There is an m by n grid with a ball. Given the start coordinate (i,j) of the ball, you can move the ball to adjacent cell or cross the grid boundary in four directions (up, down, left, right). However, you can at most move Ntimes. Find out the number of paths to move the ball out of grid boundary. The answer may be very large, return it after mod 109 + 7. 

    Example 1:

    Input: m = 2, n = 2, N = 2, i = 0, j = 0
    Output: 6
    Explanation:
    

    Example 2:

    Input: m = 1, n = 3, N = 3, i = 0, j = 1
    Output: 12
    Explanation:
    

    Note:

    1. Once you move the ball out of boundary, you cannot move it back.
    2. The length and height of the grid is in range [1,50].
    3. N is in range [0,50].

    给定一个 m × n 的网格和一个球。球的起始坐标为 (i,j) ,你可以将球移到相邻的单元格内,或者往上、下、左、右四个方向上移动使球穿过网格边界。但是,你最多可以移动 N 次。找出可以将球移出边界的路径数量。答案可能非常大,返回 结果 mod 109 + 7 的值。

    示例 1:

    输入: m = 2, n = 2, N = 2, i = 0, j = 0
    输出: 6
    解释:
    

    示例 2:

    输入: m = 1, n = 3, N = 3, i = 0, j = 1
    输出: 12
    解释:

    说明:

    1. 球一旦出界,就不能再被移动回网格内。
    2. 网格的长度和高度在 [1,50] 的范围内。
    3. N 在 [0,50] 的范围内。

    44ms

     1 class Solution {
     2     func findPaths(_ m: Int, _ n: Int, _ N: Int, _ i: Int, _ j: Int) -> Int {
     3         var dp = [[[Int]]](repeating: [[Int]](repeating: [Int](repeating: -1, count: N+1), count: n), count: m)
     4         return findPaths(m, n, N, i, j, &dp)
     5     }
     6     
     7     func findPaths(_ m: Int, _ n: Int, _ N: Int, _ i: Int, _ j: Int, _ dp: inout [[[Int]]]) -> Int {
     8         // print("(i), (j), (N)")
     9         let minMoves = min(min(i+1, m-i), min(j+1, n-j))
    10         if minMoves > N { return 0 }
    11         if dp[i][j][N] > -1 { return dp[i][j][N] }
    12         if dp[m-i-1][j][N] > -1 { return dp[m-i-1][j][N] }
    13         if dp[i][n-j-1][N] > -1 { return dp[i][n-j-1][N] }
    14         if dp[m-i-1][n-j-1][N] > -1 { return dp[m-i-1][n-j-1][N] }
    15         var res = 0
    16         for (d_i, d_j) in [(-1, 0), (1, 0), (0, -1), (0, 1)] {
    17             let next_i = i + d_i
    18             let next_j = j + d_j
    19             if next_i < 0 || next_i >= m || next_j < 0 || next_j >= n {
    20                 res += 1
    21             } else {
    22                 res += findPaths(m, n, N-1, next_i, next_j, &dp)
    23                 res = res % 1000000007
    24             }
    25         }
    26         
    27         dp[i][j][N] = res 
    28         return res
    29     }
    30 }

    104ms

     1 class Solution {    
     2     private let dirs = [[-1, 0], [1, 0], [0, -1], [0, 1]]
     3     private let mod = 1000000000 + 7
     4     
     5     func findPaths(_ m: Int, _ n: Int, _ N: Int, _ i: Int, _ j: Int) -> Int {
     6         var memo: [[[Int]]] = Array(repeating: Array(repeating: Array(repeating: -1, count: N + 1), count: n), count: m)
     7         return dfs(m, n, N, i, j, &memo)
     8     }
     9     
    10     private func dfs(_ m: Int, _ n: Int, _ N: Int, _ i: Int, _ j: Int, _ memo: inout [[[Int]]]) -> Int {
    11         if i < 0 || i >= m || j < 0 || j >= n {
    12             return 1
    13         }
    14         if N == 0 { return 0 }
    15         if memo[i][j][N] != -1 { return memo[i][j][N] }
    16         memo[i][j][N] = 0
    17         for dir in dirs {
    18             let x = i + dir[0]
    19             let y = j + dir[1]
    20             memo[i][j][N] = (memo[i][j][N] + dfs(m, n, N - 1, x, y, &memo) % mod) % mod
    21         }
    22         return memo[i][j][N]
    23     }
    24 }

    180ms

     1 class Solution {
     2     func findPaths(_ m: Int, _ n: Int, _ N: Int, _ i: Int, _ j: Int) -> Int {
     3         let M = 1000000000 + 7
     4         let memoZero = Array(repeating: Array(repeating: 0, count: n), count: m)
     5         var memo = memoZero
     6         memo[i][j] = 1
     7         var count = 0
     8         for _ in 0..<N {
     9             var temp = memoZero
    10             for x in 0..<m {
    11                 for y in 0..<n {
    12                     let curr = memo[x][y]
    13                     if x == m - 1 { count += curr }
    14                     if y == n - 1 { count += curr }
    15                     if x == 0 { count += curr }
    16                     if y == 0 { count += curr }
    17                     count %= M
    18                     temp[x][y] += x > 0 ? memo[x - 1][y]: 0
    19                     temp[x][y] += x < m - 1 ? memo[x + 1][y]: 0
    20                     temp[x][y] += y > 0 ? memo[x][y - 1]: 0
    21                     temp[x][y] += y < n - 1 ? memo[x][y + 1]: 0
    22                     temp[x][y] %= M
    23                 }
    24             }
    25             memo = temp
    26         }
    27         return count
    28     }
    29 }

    Runtime: 332 ms
    Memory Usage: 19 MB
     1 class Solution {
     2     func findPaths(_ m: Int, _ n: Int, _ N: Int, _ i: Int, _ j: Int) -> Int {
     3         var res:Int = 0
     4         var dp:[[Int]] = [[Int]](repeating:[Int](repeating:0,count:n),count:m)
     5         dp[i][j] = 1
     6         var dirs:[[Int]] = [[0,-1],[-1,0],[0,1],[1,0]]
     7         for k in 0..<N
     8         {
     9             var t:[[Int]] = [[Int]](repeating:[Int](repeating:0,count:n),count:m)
    10             for r in 0..<m
    11             {
    12                 for c in 0..<n
    13                 {
    14                     for dir in dirs
    15                     {
    16                         var x:Int = r + dir[0]
    17                         var y:Int = c + dir[1]
    18                         if x < 0 || x >= m || y < 0 || y >= n
    19                         {
    20                             res = (res + dp[r][c]) % 1000000007
    21                         }
    22                         else
    23                         {
    24                             t[x][y] = (t[x][y] + dp[r][c]) % 1000000007
    25                         }
    26                     }
    27                 }
    28             }
    29             dp = t
    30         }
    31         return res
    32     }
    33 }
  • 相关阅读:
    Scala-文件操作
    python-数字
    python-访问模型
    scala-包
    Scala对象
    Scala-类
    sql存储过程
    sql视图
    sql基本语句
    sql中级语句
  • 原文地址:https://www.cnblogs.com/strengthen/p/10420741.html
Copyright © 2011-2022 走看看