★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★
➤微信公众号:山青咏芝(shanqingyongzhi)
➤博客园地址:山青咏芝(https://www.cnblogs.com/strengthen/)
➤GitHub地址:https://github.com/strengthen/LeetCode
➤原文地址: https://www.cnblogs.com/strengthen/p/10504875.html
➤如果链接不是山青咏芝的博客园地址,则可能是爬取作者的文章。
➤原文已修改更新!强烈建议点击原文地址阅读!支持作者!支持原创!
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★
Normally, the factorial of a positive integer n
is the product of all positive integers less than or equal to n
. For example, factorial(10) = 10 * 9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1
.
We instead make a clumsy factorial: using the integers in decreasing order, we swap out the multiply operations for a fixed rotation of operations: multiply (*), divide (/), add (+) and subtract (-) in this order.
For example, clumsy(10) = 10 * 9 / 8 + 7 - 6 * 5 / 4 + 3 - 2 * 1
. However, these operations are still applied using the usual order of operations of arithmetic: we do all multiplication and division steps before any addition or subtraction steps, and multiplication and division steps are processed left to right.
Additionally, the division that we use is floor division such that 10 * 9 / 8
equals 11
. This guarantees the result is an integer.
Implement the clumsy
function as defined above: given an integer N
, it returns the clumsy factorial of N
.
Example 1:
Input: 4 Output: 7 Explanation: 7 = 4 * 3 / 2 + 1
Example 2:
Input: 10
Output: 12
Explanation: 12 = 10 * 9 / 8 + 7 - 6 * 5 / 4 + 3 - 2 * 1
Note:
1 <= N <= 10000
-2^31 <= answer <= 2^31 - 1
(The answer is guaranteed to fit within a 32-bit integer.)
通常,正整数 n
的阶乘是所有小于或等于 n
的正整数的乘积。例如,factorial(10) = 10 * 9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1
。
相反,我们设计了一个笨阶乘 clumsy
:在整数的递减序列中,我们以一个固定顺序的操作符序列来依次替换原有的乘法操作符:乘法(*),除法(/),加法(+)和减法(-)。
例如,clumsy(10) = 10 * 9 / 8 + 7 - 6 * 5 / 4 + 3 - 2 * 1
。然而,这些运算仍然使用通常的算术运算顺序:我们在任何加、减步骤之前执行所有的乘法和除法步骤,并且按从左到右处理乘法和除法步骤。
另外,我们使用的除法是地板除法(floor division),所以 10 * 9 / 8
等于 11
。这保证结果是一个整数。
实现上面定义的笨函数:给定一个整数 N
,它返回 N
的笨阶乘。
示例 1:
输入:4 输出:7 解释:7 = 4 * 3 / 2 + 1
示例 2:
输入:10 输出:12 解释:12 = 10 * 9 / 8 + 7 - 6 * 5 / 4 + 3 - 2 * 1
提示:
1 <= N <= 10000
-2^31 <= answer <= 2^31 - 1
(答案保证符合 32 位整数。)
1 class Solution { 2 func clumsy(_ N: Int) -> Int 3 { 4 if N == 1 {return 1} 5 if N == 2 {return 2} 6 if N == 3 {return 3 * 2 / 1} 7 return N * (N - 1) / (N - 2) + clumsyInternal(N - 3) 8 } 9 10 func clumsyInternal(_ N: Int) -> Int { 11 if N == 0 {return 0} 12 if N == 1 {return 1} 13 if N == 2 {return 1} 14 if N == 3 {return 3 - 2 * 1} 15 var ans:Int = N - (N - 1) * (N - 2) / (N - 3) 16 return ans + clumsyInternal(N - 4) 17 } 18 }
4ms
1 class Solution { 2 func clumsy(_ n: Int) -> Int { 3 if n == 1 { 4 return 1 5 } else if n == 2 { 6 return 2 7 } else if n == 3 { 8 return 6 9 } 10 var result = n*(n-1)/(n-2) 11 var n = n-3 12 while n >= 4 { 13 result += n - (n-1)*(n-2)/(n-3) 14 n -= 4 15 } 16 if n > 0 { 17 result += 1 18 } 19 return result 20 } 21 }
4ms
1 class Solution { 2 func clumsy(_ n: Int) -> Int { 3 switch n { 4 case 1: 5 return 1 6 case 2: 7 return 2 8 case 3: 9 return 6 10 default: 11 return n*(n-1)/(n-2) + clumsyInternal(n-3) 12 } 13 } 14 15 func clumsyInternal(_ n : Int ) -> Int { 16 if n >= 4 { 17 return n - (n-1)*(n-2)/(n-3) + clumsyInternal(n-4) 18 } 19 if n == 0 { 20 return 0 21 } 22 return 1 23 } 24 }
112ms
1 class Solution { 2 enum Operation: Int { 3 case mul 4 case div 5 case add 6 case sub 7 8 func next() -> Operation { 9 return Operation(rawValue: (self.rawValue + 1) % 4 )! 10 } 11 } 12 13 struct OperationCluster { 14 var current: Operation { 15 return operations[currentIndex] 16 } 17 18 var currentIndex: Int 19 20 let operations: [Operation] 21 init(operations: [Operation]) { 22 self.operations = operations 23 self.currentIndex = 0 24 } 25 26 mutating func next() { 27 currentIndex = (currentIndex + 1) % operations.count 28 } 29 } 30 31 func clumsy(_ N: Int) -> Int { 32 var a = [Int]() 33 34 for i in 0..<N { 35 a.append(N-i) 36 } 37 38 var multiplied = [Int]() 39 40 var operationCluster = OperationCluster(operations: [.mul, .div, .add, .sub]) 41 var ignoreNextOperand = false 42 43 for (index, number) in a.enumerated() { 44 defer { 45 operationCluster.next() 46 } 47 48 guard ignoreNextOperand == false else { 49 ignoreNextOperand = false 50 continue 51 } 52 53 switch operationCluster.current { 54 case .mul: 55 let result = number * (next(in: a, after: index) ?? 1) 56 multiplied.append(result) 57 ignoreNextOperand = true 58 case .div: 59 multiplied.append(number) 60 case .add: 61 multiplied.append(number) 62 case .sub: 63 multiplied.append(number) 64 } 65 } 66 67 operationCluster = OperationCluster(operations: [.div, .add, .sub]) 68 ignoreNextOperand = false 69 70 var divided = [Int]() 71 72 for (index, number) in multiplied.enumerated() { 73 defer { 74 operationCluster.next() 75 } 76 77 guard ignoreNextOperand == false else { 78 ignoreNextOperand = false 79 continue 80 } 81 82 switch operationCluster.current { 83 case .mul: 84 assertionFailure() 85 break 86 case .div: 87 let result = number / (next(in: multiplied, after: index) ?? 1) 88 divided.append(result) 89 ignoreNextOperand = true 90 case .add: 91 divided.append(number) 92 case .sub: 93 divided.append(number) 94 } 95 } 96 97 operationCluster = OperationCluster(operations: [.add, .sub]) 98 ignoreNextOperand = false 99 100 var signApplied = [Int]() 101 102 signApplied.append(divided.first ?? 0) 103 104 for (index, number) in divided.enumerated() { 105 defer { 106 operationCluster.next() 107 } 108 109 guard ignoreNextOperand == false else { 110 ignoreNextOperand = false 111 continue 112 } 113 114 switch operationCluster.current { 115 case .mul: 116 assertionFailure() 117 break 118 case .div: 119 assertionFailure() 120 break 121 case .add: 122 signApplied.append(next(in: divided, after: index) ?? 0) 123 case .sub: 124 signApplied.append(-(next(in: divided, after: index) ?? 0)) 125 } 126 } 127 128 return signApplied.reduce(0, +) 129 } 130 131 func next(in array: [Int], after index: Int) -> Int? { 132 let maxIndex = array.count - 1 133 if maxIndex <= index { 134 return nil 135 } 136 return array[index + 1] 137 } 138 }