★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★
➤微信公众号:山青咏芝(shanqingyongzhi)
➤博客园地址:山青咏芝(https://www.cnblogs.com/strengthen/)
➤GitHub地址:https://github.com/strengthen/LeetCode
➤原文地址: https://www.cnblogs.com/strengthen/p/10526737.html
➤如果链接不是山青咏芝的博客园地址,则可能是爬取作者的文章。
➤原文已修改更新!强烈建议点击原文地址阅读!支持作者!支持原创!
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★
A virus is spreading rapidly, and your task is to quarantine the infected area by installing walls.
The world is modeled as a 2-D array of cells, where 0
represents uninfected cells, and 1
represents cells contaminated with the virus. A wall (and only one wall) can be installed between any two 4-directionally adjacent cells, on the shared boundary.
Every night, the virus spreads to all neighboring cells in all four directions unless blocked by a wall. Resources are limited. Each day, you can install walls around only one region -- the affected area (continuous block of infected cells) that threatens the most uninfected cells the following night. There will never be a tie.
Can you save the day? If so, what is the number of walls required? If not, and the world becomes fully infected, return the number of walls used.
Example 1:
Input: grid = [[0,1,0,0,0,0,0,1], [0,1,0,0,0,0,0,1], [0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0]] Output: 10 Explanation: There are 2 contaminated regions. On the first day, add 5 walls to quarantine the viral region on the left. The board after the virus spreads is: [[0,1,0,0,0,0,1,1], [0,1,0,0,0,0,1,1], [0,0,0,0,0,0,1,1], [0,0,0,0,0,0,0,1]] On the second day, add 5 walls to quarantine the viral region on the right. The virus is fully contained.
Example 2:
Input: grid = [[1,1,1], [1,0,1], [1,1,1]] Output: 4 Explanation: Even though there is only one cell saved, there are 4 walls built. Notice that walls are only built on the shared boundary of two different cells.
Example 3:
Input: grid = [[1,1,1,0,0,0,0,0,0], [1,0,1,0,1,1,1,1,1], [1,1,1,0,0,0,0,0,0]] Output: 13 Explanation: The region on the left only builds two new walls.
Note:
- The number of rows and columns of
grid
will each be in the range[1, 50]
. - Each
grid[i][j]
will be either0
or1
. - Throughout the described process, there is always a contiguous viral region that will infect strictly more uncontaminated squares in the next round.
病毒扩散得很快,现在你的任务是尽可能地通过安装防火墙来隔离病毒。
假设世界由二维矩阵组成,0
表示该区域未感染病毒,而 1
表示该区域已感染病毒。可以在任意 2 个四方向相邻单元之间的共享边界上安装一个防火墙(并且只有一个防火墙)。
每天晚上,病毒会从被感染区域向相邻未感染区域扩散,除非被防火墙隔离。现由于资源有限,每天你只能安装一系列防火墙来隔离其中一个被病毒感染的区域(一个区域或连续的一片区域),且该感染区域对未感染区域的威胁最大且保证唯一。
你需要努力使得最后有部分区域不被病毒感染,如果可以成功,那么返回需要使用的防火墙个数; 如果无法实现,则返回在世界被病毒全部感染时已安装的防火墙个数。
示例 1:
输入: grid = [[0,1,0,0,0,0,0,1], [0,1,0,0,0,0,0,1], [0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0]] 输出: 10 说明: 一共有两块被病毒感染的区域: 从左往右第一块需要 5 个防火墙,同时若该区域不隔离,晚上将感染 5 个未感染区域(即被威胁的未感染区域个数为 5); 第二块需要 4 个防火墙,同理被威胁的未感染区域个数是 4。因此,第一天先隔离左边的感染区域,经过一晚后,病毒传播后世界如下: [[0,1,0,0,0,0,1,1], [0,1,0,0,0,0,1,1], [0,0,0,0,0,0,1,1], [0,0,0,0,0,0,0,1]] 第二题,只剩下一块未隔离的被感染的连续区域,此时需要安装 5 个防火墙,且安装完毕后病毒隔离任务完成。
示例 2:
输入: grid = [[1,1,1], [1,0,1], [1,1,1]] 输出: 4 说明: 此时只需要安装 4 面防火墙,就有一小区域可以幸存,不被病毒感染。 注意不需要在世界边界建立防火墙。
示例 3:
输入: grid = [[1,1,1,0,0,0,0,0,0], [1,0,1,0,1,1,1,1,1], [1,1,1,0,0,0,0,0,0]] 输出: 13 说明: 在隔离右边感染区域后,隔离左边病毒区域只需要 2 个防火墙了。
说明:
grid
的行数和列数范围是 [1, 50]。-
grid[i][j]
只包含0
或1
。 - 题目保证每次选取感染区域进行隔离时,一定存在唯一一个对未感染区域的威胁最大的区域。
1 class Solution { 2 func containVirus(_ grid: [[Int]]) -> Int { 3 var grid = grid 4 var res:Int = 0 5 var m:Int = grid.count 6 var n:Int = grid[0].count 7 var dirs:[[Int]] = [[-1,0],[0,1],[1,0],[0,-1]] 8 while (true ) 9 { 10 var visited:Set<Int> = Set<Int>() 11 var all:[[[Int]]] = [[[Int]]]() 12 for i in 0..<m 13 { 14 for j in 0..<n 15 { 16 if grid[i][j] == 1 && !visited.contains(i * n + j) 17 { 18 var q:[Int] = [i * n + j] 19 var virus:[Int] = [i * n + j] 20 var walls:[Int] = [Int]() 21 visited.insert(i * n + j) 22 while(!q.isEmpty) 23 { 24 var t:Int = q.removeFirst() 25 for dir in dirs 26 { 27 var x:Int = (t / n) + dir[0] 28 var y:Int = (t % n) + dir[1] 29 if x < 0 || x >= m || y < 0 || y >= n || visited.contains(x * n + y) 30 { 31 continue 32 } 33 if grid[x][y] == -1 34 { 35 continue 36 } 37 else if grid[x][y] == 0 38 { 39 walls.append(x * n + y) 40 } 41 else if grid[x][y] == 1 42 { 43 visited.insert(x * n + y) 44 virus.append(x * n + y) 45 q.append(x * n + y) 46 } 47 } 48 } 49 var s:Set<Int> = Set(walls) 50 var cells:[Int] = [s.count] 51 all.append([cells ,walls, virus]) 52 } 53 } 54 } 55 if all.isEmpty {break} 56 all.sort(by:{(a:[[Int]],b:[[Int]]) -> Bool in 57 return a[0][0] > b[0][0]}) 58 for i in 0..<all.count 59 { 60 if i == 0 61 { 62 var virus:[Int] = all[0][2] 63 for idx in virus 64 { 65 grid[idx / n][idx % n] = -1 66 } 67 res += all[0][1].count 68 } 69 else 70 { 71 var wall:[Int] = all[i][1] 72 for idx in wall 73 { 74 grid[idx / n][idx % n] = 1 75 } 76 } 77 } 78 } 79 return res 80 } 81 }