zoukankan      html  css  js  c++  java
  • [Swift]LeetCode882. 细分图中的可到达结点 | Reachable Nodes In Subdivided Graph

    ★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★
    ➤微信公众号:山青咏芝(shanqingyongzhi)
    ➤博客园地址:山青咏芝(https://www.cnblogs.com/strengthen/
    ➤GitHub地址:https://github.com/strengthen/LeetCode
    ➤原文地址: https://www.cnblogs.com/strengthen/p/10602841.html 
    ➤如果链接不是山青咏芝的博客园地址,则可能是爬取作者的文章。
    ➤原文已修改更新!强烈建议点击原文地址阅读!支持作者!支持原创!
    ★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★

    Starting with an undirected graph (the "original graph") with nodes from 0 to N-1, subdivisions are made to some of the edges.

    The graph is given as follows: edges[k] is a list of integer pairs (i, j, n) such that (i, j) is an edge of the original graph,

    and n is the total number of new nodes on that edge. 

    Then, the edge (i, j) is deleted from the original graph, n new nodes (x_1, x_2, ..., x_n) are added to the original graph,

    and n+1 new edges (i, x_1), (x_1, x_2), (x_2, x_3), ..., (x_{n-1}, x_n), (x_n, j) are added to the original graph.

    Now, you start at node 0 from the original graph, and in each move, you travel along one edge. 

    Return how many nodes you can reach in at most M moves. 

    Example 1:

    Input: edges = [[0,1,10],[0,2,1],[1,2,2]], M = 6, N = 3
    Output: 13
    Explanation: 
    The nodes that are reachable in the final graph after M = 6 moves are indicated below.
    
    

    Example 2:

    Input: edges = [[0,1,4],[1,2,6],[0,2,8],[1,3,1]], M = 10, N = 4
    Output: 23 

    Note:

    1. 0 <= edges.length <= 10000
    2. 0 <= edges[i][0] < edges[i][1] < N
    3. There does not exist any i != j for which edges[i][0] == edges[j][0] and edges[i][1] == edges[j][1].
    4. The original graph has no parallel edges.
    5. 0 <= edges[i][2] <= 10000
    6. 0 <= M <= 10^9
    7. 1 <= N <= 3000
    8. A reachable node is a node that can be travelled to using at most M moves starting from node 0.

    从具有 0 到 N-1 的结点的无向图(“原始图”)开始,对一些边进行细分。

    该图给出如下:edges[k] 是整数对 (i, j, n) 组成的列表,使 (i, j) 是原始图的边。

    n 是该边上新结点的总数

    然后,将边 (i, j) 从原始图中删除,将 n 个新结点 (x_1, x_2, ..., x_n) 添加到原始图中,

    将 n+1 条新边 (i, x_1), (x_1, x_2), (x_2, x_3), ..., (x_{n-1}, x_n), (x_n, j) 添加到原始图中。

    现在,你将从原始图中的结点 0 处出发,并且每次移动,你都将沿着一条边行进。

    返回最多 M 次移动可以达到的结点数。 

    示例 1:

    输入:edges = [[0,1,10],[0,2,1],[1,2,2]], M = 6, N = 3
    输出:13
    解释:
    在 M = 6 次移动之后在最终图中可到达的结点如下所示。
    

    示例 2:

    输入:edges = [[0,1,4],[1,2,6],[0,2,8],[1,3,1]], M = 10, N = 4
    输出:23 

    提示:

    1. 0 <= edges.length <= 10000
    2. 0 <= edges[i][0] < edges[i][1] < N
    3. 不存在任何 i != j 情况下 edges[i][0] == edges[j][0] 且 edges[i][1] == edges[j][1].
    4. 原始图没有平行的边。
    5. 0 <= edges[i][2] <= 10000
    6. 0 <= M <= 10^9
    7. 1 <= N <= 3000

    Runtime: 572 ms
    Memory Usage: 21.3 MB
     1 class Solution {
     2     func reachableNodes(_ edges: [[Int]], _ M: Int, _ N: Int) -> Int {
     3         var steps:[Int] = [Int](repeating:-1,count:N)
     4         steps[0] = M
     5         for _ in 0...N
     6         {
     7             var stable:Bool = true
     8             for edge in edges
     9             {
    10                 if 0 < steps[edge[0]]
    11                 {
    12                     let diff:Int = steps[edge[0]] - edge[2] - 1
    13                     if steps[edge[1]] < diff
    14                     {
    15                         steps[edge[1]] = diff
    16                         stable = false
    17                     }
    18                 }
    19                 if 0 < steps[edge[1]]
    20                 {
    21                     let diff:Int = steps[edge[1]] - edge[2] - 1
    22                     if steps[edge[0]] < diff
    23                     {
    24                         steps[edge[0]] = diff
    25                         stable = false
    26                     }
    27                 }
    28             }
    29             if stable {break}
    30         }
    31         var res:Int = 0
    32         for i in steps
    33         {
    34             if 0 <= i
    35             {
    36                 res += 1
    37             }
    38         }
    39         for edge in edges
    40         {
    41             var cnt:Int = 0
    42             if 0 < steps[edge[0]]
    43             {
    44                 cnt += steps[edge[0]]
    45             }
    46             if 0 < steps[edge[1]]
    47             {
    48                 cnt += steps[edge[1]]
    49             }
    50             res += edge[2] >= cnt ? cnt : edge[2]
    51         }
    52         return res
    53     }
    54 }
  • 相关阅读:
    [剑指Offer] 从尾到头打印链表
    [剑指Offer] 替换空格
    [剑指Offer] 二维数组中的查找
    [LeetCode] 53. Maximum Subarray
    [LeetCode] 283. Move Zeroes
    haproxy + rabbitmq + keepalived的高可用环境搭建
    iis7下站点日志默认位置
    在vs2012中配置使用iisexpress
    tomcat配置域名,单项目指定多域名
    httpget和post
  • 原文地址:https://www.cnblogs.com/strengthen/p/10602841.html
Copyright © 2011-2022 走看看