zoukankan      html  css  js  c++  java
  • Python之迭代器,生成器

    迭代器

    1.什么是可迭代对象

    字符串、列表、元组、字典、集合都可以被for循环,说明他们都是可迭代的。

    from collections import Iterable
                                 
    l = [1,2,3,4]                
    t = (1,2,3,4)                
    d = {1:2,3:4}                
    s = {1,2,3,4}                
                                 
    print(isinstance(l,Iterable))
    print(isinstance(t,Iterable))
    print(isinstance(d,Iterable))
    print(isinstance(s,Iterable))

    2.可迭代协议

    可以被for循环的都是可迭代的,要想可迭代,内部必须有一个__iter__方法。

    接着分析,__iter__方法做了什么事情呢?

    可迭代的:内部必须含有一个__iter__方法。

    print([1,2].__iter__())
    
    结果
    <list_iterator object at 0x1024784a8>

    执行了list([1,2])的__iter__方法,我们好像得到了一个list_iterator,现在我们又得到了一个新名词——iterator

    iterator,是一个计算机中的专属名词,叫做迭代器

    3.迭代器协议

    l = [1,2,3,4]
    l_iter = l.__iter__()  # 将可迭代的转化成迭代器
    item = l_iter.__next__()
    print(item)
    item = l_iter.__next__()
    print(item)
    item = l_iter.__next__()
    print(item)
    item = l_iter.__next__()
    print(item)
    item = l_iter.__next__()
    print(item)

    这是一段会报错的代码,如果我们一直取next取到迭代器里已经没有元素了,就会抛出一个异常StopIteration,告诉我们,列表中已经没有有效的元素了。

    这个时候,我们就要使用异常处理机制来把这个异常处理掉。

    l = [1,2,3,4]
    l_iter = l.__iter__()
    while True:
        try:
            item = l_iter.__next__()
            print(item)
        except StopIteration:
            break

    迭代器遵循迭代器协议:必须拥有__iter__方法和__next__方法。

    迭代器取值:s.__next__()  每次取一个值

    可迭代对象和迭代器区别:只含有__iter__方法的数据是可迭代对象,含有__iter__方法并且含有__next__方法的数据是迭代器。

    可迭代对象判断方法:

    方法一:dir(被测试对象),print('__iter__' in dir(s)),如果他含有__iter__,那这个对象就叫做可迭代对象。遵循可迭代协议。

    方法二:测试它是迭代器还是可迭代对象。

    l = [1,2,3,4]
    l_iter = l.__iter__()
    from collections import Iterable  #可迭代对象
    from collections import Iterator   #迭代器
    print(isinstance(l,Iterable))    #True
    print(isinstance(l,Iterator))      # False 

    还账:next和iter方法

    如此一来,关于迭代器和生成器的方法我们就还清了两个,最后我们来看看range()是个啥。首先,它肯定是一个可迭代的对象,但是它是否是一个迭代器?我们来测试一下

    print('__next__' in dir(range(12)))  #查看'__next__'是不是在range()方法执行之后内部是否有__next__
    print('__iter__' in dir(range(12)))  #查看'__next__'是不是在range()方法执行之后内部是否有__next__
    
    from collections import Iterator
    print(isinstance(range(100000000),Iterator))  #验证range执行之后得到的结果不是一个迭代器

    迭代器的意义

    Ⅰ 节省内存

    Ⅱ迭代器惰性机制

    Ⅲ迭代器不能反复,一直向下执行。不可逆。

    可迭代对象:str list tuple dict set 

    迭代器:文件句柄

    4.为什么要有for循环

    基于上面讲的列表这一大堆遍历方式,聪明的你立马看除了端倪,于是你不知死活大声喊道,你这不逗我玩呢么,有了下标的访问方式,我可以这样遍历一个列表啊

    l=[1,2,3]
    
    index=0
    while index < len(l):
        print(l[index])
        index+=1
    
    #要毛线for循环,要毛线可迭代,要毛线迭代器

    没错,序列类型字符串,列表,元组都有下标,你用上述的方式访问,perfect!但是你可曾想过非序列类型像字典,集合,文件对象的感受,所以嘛,年轻人,for循环就是基于迭代器协议提供了一个统一的可以遍历所有对象的方法,即在遍历之前,先调用对象的__iter__方法将其转换成一个迭代器,然后使用迭代器协议去实现循环访问,这样所有的对象就都可以通过for循环来遍历了,而且你看到的效果也确实如此,这就是无所不能的for循环,觉悟吧,年轻人

    生成器

    初识生成器

    我们知道的迭代器有两种:一种是调用方法直接返回的,一种是可迭代对象通过执行iter方法得到的,迭代器有的好处是可以节省内存。

    如果在某些情况下,我们也需要节省内存,就只能自己写。我们自己写的这个能实现迭代器功能的东西就叫生成器。

     

    Python中提供的生成器:

    1.生成器函数:常规函数定义,但是,使用yield语句而不是return语句返回结果。yield语句一次返回一个结果,在每个结果中间,挂起函数的状态,以便下次重它离开的地方继续执行

    2.生成器表达式:类似于列表推导,但是,生成器返回按需产生结果的一个对象,而不是一次构建一个结果列表

     

    生成器Generator:

      本质:迭代器(所以自带了__iter__方法和__next__方法,不需要我们去实现)

      特点:惰性运算,开发者自定义

    生成器函数

    一个包含yield关键字的函数就是一个生成器函数。yield可以为我们从函数中返回值,但是yield又不同于return,return的执行意味着程序的结束,调用生成器函数不会得到返回的具体的值,而是得到一个可迭代的对象。每一次获取这个可迭代对象的值,就能推动函数的执行,获取新的返回值。直到函数执行结束。

    import time
    def genrator_fun1():
        a = 1
        print('现在定义了a变量')
        yield a
        b = 2
        print('现在又定义了b变量')
        yield b
    
    g1 = genrator_fun1()
    print('g1 : ',g1)       #打印g1可以发现g1就是一个生成器
    print('-'*20)   #我是华丽的分割线
    print(next(g1))
    time.sleep(1)   #sleep一秒看清执行过程
    print(next(g1))

    生成器有什么好处呢?就是不会一下子在内存中生成太多数据

    假如我向工厂订购校服,生产2000000件衣服,我和工厂一说,工厂应该是先答应下来,然后再去生产,我可以一件一件的要,也可以根据需求一批一批的找工厂拿。
    而不能是一说要生产2000000件衣服,工厂就先去做生产2000000件衣服

    #初识生成器二
    
    def produce():
        """生产衣服"""
        for i in range(2000000):
            yield "生产了第%s件衣服"%i
    
    product_g = produce()
    print(product_g.__next__()) #要一件衣服
    print(product_g.__next__()) #再要一件衣服
    print(product_g.__next__()) #再要一件衣服
    num = 0
    for i in product_g:         #要一批衣服,比如5件
        print(i)
        num +=1
        if num == 5:
            break
    
    #到这里我们找工厂拿了8件衣服,我一共让我的生产函数(也就是produce生成器函数)生产2000000件衣服。
    #剩下的还有很多衣服,我们可以一直拿,也可以放着等想拿的时候再拿
    
    初识生成器二

    更多应用

    import time
    
    
    def tail(filename):
        f = open(filename)
        f.seek(0, 2) #从文件末尾算起
        while True:
            line = f.readline()  # 读取文件中新的文本行
            if not line:
                time.sleep(0.1)
                continue
            yield line
    
    tail_g = tail('tmp')
    for line in tail_g:
        print(line)
    
    生成器监听文件输入的例子

    send

    def generator():
        print(123)
        content = yield 1
        print('=======',content)
        print(456)
        yield2
    
    g = generator()
    ret = g.__next__()
    print('***',ret)
    ret = g.send('hello')   #send的效果和next一样
    print('***',ret)
    
    #send 获取下一个值的效果和next基本一致
    #只是在获取下一个值的时候,给上一yield的位置传递一个数据
    #使用send的注意事项
        # 第一次使用生成器的时候 是用next获取下一个值
        # 最后一个yield不能接受外部的值
    def averager():
        total = 0.0
        count = 0
        average = None
        while True:
            term = yield average
            total += term
            count += 1
            average = total/count
    
    
    g_avg = averager()
    next(g_avg)
    print(g_avg.send(10))
    print(g_avg.send(30))
    print(g_avg.send(5))
    def init(func):  #在调用被装饰生成器函数的时候首先用next激活生成器
        def inner(*args,**kwargs):
            g = func(*args,**kwargs)
            next(g)
            return g
        return inner
    
    @init
    def averager():
        total = 0.0
        count = 0
        average = None
        while True:
            term = yield average
            total += term
            count += 1
            average = total/count
    
    
    g_avg = averager()
    # next(g_avg)   在装饰器中执行了next方法
    print(g_avg.send(10))
    print(g_avg.send(30))
    print(g_avg.send(5))

    yield from

    def gen1():
        for c in 'AB':
            yield c
        for i in range(3):
            yield i
    
    print(list(gen1()))
    
    def gen2():
        yield from 'AB'
        yield from range(3)
    
    print(list(gen2()))
    
    yield from

    return和yield区别:

    return返回给调用者值,并结束此函数。

    yield返回给调用者值,并将指针停留在当前位置。

  • 相关阅读:
    TensorFlow函数(七)tf.argmax()
    Harbor 1.8.0 仓库的安装和使用
    Rust基础笔记:闭包
    docker-compose搭建单机多节点es + kibana
    Filebeat+Logstash+Elasticsearch测试
    filebeat 笔记
    ELK笔记
    manjaro i3 配置笔记
    manjaro 下golang protobuf的使用
    go 算法
  • 原文地址:https://www.cnblogs.com/strive-man/p/8424213.html
Copyright © 2011-2022 走看看