zoukankan      html  css  js  c++  java
  • e的存在性证明和计算公式的证明

    (quadquad前言quadquad\)
    (此证明,改编自中科大数分教材,史济怀版\)
    (中科大教材,用的是先固定m,再放大m,跟菲赫金哥尔茨的方法一样。\)
    (而我这里的证明,是依据m的任意性,后来发现小平邦彦的《微积分入门》里,也是用的这个方法,即,m的任意性。\)
    (中科大和菲赫金哥尔茨用的记号是a_{m},我在知乎咨询龚漫奇老师后,根据龚老师的建议,改为a_{n,m},以避免\)
    (混淆,否则a_{m},相当于a_{n}的n取值m,只有一个变量n,取值m,而a_{n}{m}有两个变量m,n\)
    (对e_{n,m}取极限时,相当于二元二次极限(注意,非二重极限),即n,m,一先一后取极限,而非二重极限\)
    (同时,我在证明中明确了数列极限的保不等式性的应用,\)
    (用了两次数列保不等式性,把e当做常数数列。\)
    (中科大和菲赫金哥尔茨的先固定m,对n取极限之后,再对m取极限,本质上就是二元二次极限,但是并未明确提及\)
    (二元二次极限这个概念)
    (------------------------------------------------------------\)
    (记S_{n}=frac{1}{0!}+frac{1}{1!}+frac{1}{2!}+cdotcdotcdot+frac{1}{n!})
    (显然,S_{n}是递增数列, 且)
    (S_{n}leqslant1+1+frac{1}{2}+frac{1}{2^2}+cdotcdotcdot+frac{1}{2^(n-1)}<3)
    (显然,S_{n}是递增)
    (因为当n趋于无穷时,1+1+frac{1}{2}+frac{1}{2^2}+cdotcdotcdot+frac{1}{2^(n-1)}=3)
    (故S_{n}是递增有界数列,可知其必有极限,设其极限为S)
    (则S=lim_{n o infty}frac{1}{0!}+frac{1}{1!}+frac{1}{2!}+cdotcdotcdot+frac{1}{n!})
    (对e_{n}进行二项式展开)
    (e_{n}={(1+frac{1}{n})}^{n}) (其中,n(in)(N^{+}))
    (quad=sum_{k=0}^{n})(C_{n}^{n-k})((frac{1}{n})^{k})
    (quad=1+sum_{k=1}^{n})(C_{n}^{n-k})(frac{1}{n^{k}})
    (quad=1+sum_{k=1}^{n}frac{n!}{(n-k)!k!}frac{1}{n^{k}})
    (quad=1+sum_{k=1}^{n}frac{1}{k!}frac{n!}{(n-k)!}frac{1}{n^{k}})
    (quad=1+sum_{k=1}^{n}frac{1}{k!}frac{(n-k+1)(n-k+2)cdotcdotcdot n}{n^{k}})
    (因为 1*2*3cdotcdotcdot(n-k)(n-k+1)(n-k+2)...n)
    从1到n-k,一共是n-k个连续数字相乘,从n-k+1到n,合计k个连续数字相乘,从1到n,合计是n个连续数字相乘

    上式(=1+sum_{k=1}^{n}frac{1}{k!}frac{(n-k+1)(n-k+2)(n-k+3)cdotcdotcdot (n-2)(n-1)n(一共k个数字)}{nnncdotcdotcdot n(一共k个n)})
    (quad=1+sum_{k=1}^{n}frac{1}{k!}frac{n(n-1)(n-2)cdotcdotcdot (n-k+3)(n-k+2)(n-k+1)(一共k个数字)}{nnncdotcdotcdot n(一共k个n)})
    (quad=1+sum_{k=1}^{n}frac{1}{k!}frac{n}{n}frac{n-1}{n}frac{n-2}{n}cdotcdotcdotfrac{n-k+2}{n}frac{n-k+1}{n})
    (quad=1+sum_{k=1}^{n}frac{1}{k!}*1*(1-frac{1}{n})(1-frac{2}{n})cdotcdotcdotfrac{n-k+2}{n}frac{n-k+1}{n})
    (quad=1+sum_{k=1}^{n}frac{1}{k!}(1-frac{1}{n})(1-frac{2}{n})cdotcdotcdot (1-frac{k-2}{n})(1-frac{k-1}{n})) (一共k-1个括号)
    展开连加号
    (quad=1+frac{1}{1!}+frac{1}{2!}(1-frac{1}{n})+frac{1}{3!}(1-frac{1}{n})(1-frac{2}{n})+cdotcdotcdot+frac{1}{n!}(1-frac{1}{n})(1-frac{2}{n})cdotcdotcdot(1-frac{n-1}{n}))
    上式最后一项,是取k=n,一共n-1个括号
    上式一共n+1项
    (由上式可知\)
    (e_{n}leqslant1+frac{1}{1!}+frac{1}{2!}+frac{1}{3!}+cdotcdotcdot+frac{1}{n!})
    (quadleqslant1+1+frac{1}{2}+frac{1}{2^2}+frac{1}{2^3}cdotcdotcdot+frac{1}{2^n})
    (=1+1*frac{1-frac{1}{2}^n}{1-frac{1}{2}})
    (=1+2*(1-frac{1}{2}^n))
    (=1+2-frac{1}{2^{n-1}})(\)
    < 3
    (且e_{n}leqslant S)
    (e_{n+1}={(1+frac{1}{n+1})}^{n+1}) (其中,n(in)(N^{+}))
    (quad=sum_{k=0}^{n+1})(C_{n+1}^{n+1-k})((frac{1}{n+1})^{k})
    (quad=sum_{k=0}^{n+1}frac{1}{k!}frac{(n+1)!}{(n+1-k)!}frac{1}{(n+1)^k})
    (quad=sum_{k=0}^{n+1}frac{1}{k!}frac{(n+1-k+1)(n+1-k+2)(n+1-k+3)cdotcdotcdot(n+1)(k个括号)}{(n+1)^k}) bbbb
    (quad=sum_{k=0}^{n+1}frac{1}{k!}frac{(n+1-k+1)(n+1-k+2)(n+1-k+3)cdotcdotcdot(n+1)(k个括号)}{(n+1)cdotcdotcdot(n+1)(k个(n+1))})
    (quad=sum_{k=0}^{n+1}frac{1}{k!}frac{(n+1)n(n-1)cdotcdotcdot(n+1-k+3)(n+1-k+2)(n+1-k+1)(k个括号)}{(n+1)cdotcdotcdot(n+1)(k个(n+1))})
    (quad=1+sum_{k=1}^{n+1}frac{1}{k!}(1-frac{1}{n+1})(1-frac{2}{n+1})cdotcdotcdot (1-frac{k-2}{n+1})(1-frac{k-1} {n+1})) (一共k-1个括号)(\)
    (quad=1+frac{1}{1!}+frac{1}{2!}(1-frac{1}{n+1})+frac{1}{3!}(1-frac{1}{n+1})(1-frac{2}{n+1})+cdotcdotcdot+frac{1}{(n+1)!}(1-frac{1}{n+1})(1-frac{2}{n+1})cdotcdotcdot(1-frac{n}{n+1}))
    (即:e_{n}=1+frac{1}{1!}+frac{1}{2!}(1-frac{1}{n})+frac{1}{3!}(1-frac{1}{n})(1-frac{2}{n})+cdotcdotcdot+frac{1}{n!}(1-frac{1}{n})(1-frac{2}{n})cdotcdotcdot(1-frac{n-1}{n})\)
    (即:e_{n+1}=1+frac{1}{1!}+frac{1}{2!}(1-frac{1}{n+1})+frac{1}{3!}(1-frac{1}{n+1})(1-frac{2}{n+1})+cdotcdotcdot+frac{1}{(n+1)!}(1-frac{1}{n+1})(1-frac{2}{n+1})cdotcdotcdot(1-frac{n}{n+1})\)
    (可知e_{n+1}为n+2项,e_{n}为n+1项,e_{n+1}比e_{n}多一项,且前面的n+1项都大于e_{n}的对应位置的项\)
    (可知e_{n+1}>e_{n}, 可知e_{n}为递增数列,且有上界3,根据单调递增有界数列必有极限,可知e_{n}有极限。)(\)
    (为e,即lim_{n o infty}e_{n}=e)
    (即lim_{n o infty}e_{n}=lim_{n o infty}(1+frac{1}{1!}+frac{1}{2!}(1-frac{1}{n})+frac{1}{3!}(1-frac{1}{n})(1-frac{2}{n})+cdotcdotcdot+frac{1}{n!}(1-frac{1}{n})(1-frac{2}{n})cdotcdotcdot(1-frac{n-1}{n})))
    (forall min N^+且mleqslant n,设\)
    (e_{n,m}=1+frac{1}{1!}+frac{1}{2!}(1-frac{1}{n})+cdotcdot+frac{1}{m!}(1-frac{1}{n})(1-frac{2}{n})cdotcdotcdot(1-frac{m-1}{n})\)
    (即:e_{n,m}是e_{n}的前m项和,所以,forall n 都有下面的不等式成立)
    (e_{n}geqslant e_{n,m})
    (根据数列极限的保不等式性,两侧对n取极限,不等式依然成立,即:\)
    (lim_{n o infty}e_{n}geqslant lim_{n o infty}e_{n,m}=1+1+frac{1}{2!}+frac{1}{3!}+cdotcdot+frac{1}{m!})
    (即quad e geqslant lim_{n o +infty}e_{n,m}=1+1+frac{1}{2!}+frac{1}{3!}+cdotcdot+frac{1}{m!})
    (此时该不等式左侧为常量e,右侧的最终结果,已经不包含变量n,仅包含变量m,而m的要求是mleqslant n,此时n为无穷大,\)
    (所以m可以取任意值,即forall m,都有 egeqslant lim_{n o infty}e_{n,m}=1+1+frac{1}{2!}+frac{1}{3!}+cdotcdot+frac{1}{m!}=S_{m}\)
    由数列极限的保不等式性,对m取极限,可得
    (egeqslant lim_{m o infty}lim_{n o infty}e_{n,m}=lim_{m o infty}frac{1}{0!}+frac{1}{1!}+frac{1}{2!}+cdotcdot++frac{1}{m!}=S)
    (而前面已经证明 eleqslant S)
    (故,得到Sleqslant eleqslant Squadquad (注意 geqslant意为"不小于",leqslant意为“不大于”))
    所以 e=S,即
    (e=lim_{n o infty}(frac{1}{0!}+frac{1}{1!}+frac{1}{2!}+cdotcdot+...frac{1}{n!}))

    (说明:在n o infty的过程中,e_{n}各项都在增大,趋于对应的阶乘倒数,\)
    (在n取无穷大时,e_{n o +infty}所有项的极限都是阶乘倒数,其极限和的极限是倒数阶乘之和\)

  • 相关阅读:
    【52】目标检测之检测算法
    【51】目标检测之特征点检测
    6-----Scrapy框架中Item Pipeline用法
    5-----Scrapy框架中Spiders用法
    4-----Scrapy框架中选择器的用法
    3-----Scrapy框架的命令行详解
    1-----Scrapy框架整体的一个了解
    Python入妖5-----正则的基本使用
    win安装wordcloud报错解决方案
    在新项目下使用rbc权限
  • 原文地址:https://www.cnblogs.com/strongdady/p/13345386.html
Copyright © 2011-2022 走看看