(e=lim_{n o infty}e_{n}(1+frac{1}{n})^n\)
(=lim_{n o infty}(frac{1}{0!}+frac{1}{1!}+frac{1}{2!}+cdotcdot+...frac{1}{n!}))
(lim_{n o infty}S_{n}=frac{1}{0!}+frac{1}{1!}+frac{1}{2!}+cdot+cdot+frac{1}{n!}=e)
因为两个数列有相同的极限e,取充分大的n,用S_{n}作为e的近似值。
(因为S_{n+1}=S_{n}+frac{1}{n!}*frac{1}{n+1}\)
(在计算过程中,可以利用前面已经计算出来的S_{n}的结果\)
(产生的误差为\)
(S_{n+m}-S{n}>0\)
(S_{n+m}-S{n}\)
(=frac{1}{(n+1)!}+frac{1}{(n+2)!}+frac{1}{(n+3)!}+cdotcdotcdot+frac{1}{(n+m)!}\)
(=frac{1}{(n+1)!}*(1+frac{1}{n+2}+cdotcdotcdot+frac{1}{(n+2)(n+3)cdotcdotcdot(n+m)})\)
(<frac{1}{(n+1)!}*(1+frac{1}{n+1}+(frac{1}{n+1})^2+(frac{1}{n+1})^3cdotcdotcdot+(frac{1}{n+1})^{m-1})\)
等比数列和公式:(S_{n}=na_{1}, q=1,quad S_{n}=a_{1}.frac{1-q^n}{1-q}, q
eq 1\)
其中n为项数。
故
(上式=frac{1}{(n+1)!}*frac{1-(frac{1}{n+1})^m}{1-frac{1}{n+1}}\)
(quad =frac{1}{n!n})
(即0<S_{n+m}-S_{n}<frac{1}{n!n})
(若m o infty,可得\)
(0 < e - S_{n} leqslant frac{1}{n!n}quadquadquad n in N^{+}quadquadquad(1)\)
证明e是无理数
证明:用反证法。
(设 e=frac{p}{q},其中p,qin N^{+})
(因为2<e<3),可知e不是整数,且q不等于1,否则,若q=1,(\)
(则e=frac{p}{q}=frac{p}{1}=p,为整数,可知qgeqslant2)
(由(1)式,当n=q时,S_{n}=S_{q}, (1)式中的n!n,替换为q!q,可得\)
(quad0<q!(e-S_{q})leqslant frac{1}{q}leqslant frac{1}{2}quadquadquad(2)\)
(把e=frac{p}{q}代人下式\)
(q!(e-S_{q})=q!(frac{p}{q} - S_{q}))
(quadquadquadquadquad=(q-1)!p-q!(1+1+frac{1}{2!}+frac{1}{3!}+cdotcdot+frac{1}{q!})))
(上式为整数,与(2)式矛盾)