zoukankan      html  css  js  c++  java
  • 函数的连续,一致连续,非一致连续

    参考知乎https://zhuanlan.zhihu.com/p/33020088
    说明:
    非一致连续,即:连续,但是非“一致连续”,或“非一致”连续。都是以连续为基本性质。
    非一致连续,属于连续。

    【连续】
    【定义1】
    (设f(x),xin[a,b]或者开区间,设x_{0}in[a,b],若forall epsilon>0,existsdelta>0,使得当|x-x_{0}|<delta时,有|f(x)-f(x_{0})|<epsilon,即称f(x)在x_{0}连续\)
    【定义2】
    (设f(x),xin[a,b]或开区间,设x_{0}in[a,b],若lim_{x o x_{0}}f(x)=f(x_{0}),跟定义1等价\)
    【总结】说明f(x)在x_{0}点,有定义,且在x_{0}点,有极限。极限值与该点函数值相等

    【一致连续】
    (设f(x),xin[a,b]或开区间,若forallepsilon>0,existsdelta>0,使得对任何x_{1},x{2}in[a,b],当\)
    (|x_{1}-x_{2}|<epsilon时,则有|f(x_{1})-f(x_{2})|<epsilon,即称f(x)在[a,b]上一致连续。\)

    (如果f(x)在闭区间上连续,则一定一致连续\)
    参考知乎https://zhuanlan.zhihu.com/p/33020088

  • 相关阅读:
    移动安全
    Photoshop笔记
    ARMv7 与 ARMv8对比
    centos系统 网络配置
    视频大文件压缩
    开发者必备Linux命令
    开发者必备Docker命令
    文件服务器minio
    Java 图片Base64
    socket
  • 原文地址:https://www.cnblogs.com/strongdady/p/13389790.html
Copyright © 2011-2022 走看看