下面的题有两个要点:
1.裂项;
2.裂项之后,并非相临项错位相减,而是分别奇数项和偶数项各自求和
3.逻辑分析,必须利用数轴做分析;
(A=48*(frac{1}{3^2-4}+frac{1}{4^2-4}+...+frac{1}{100^2-4},则与A最接近的正整数是())
((A)18quad(B)20quad (C)24quad(D)25)
(解:写出通项,a_{n}=frac{1}{n^2-4},3≤n≤100)
(即:frac{1}{(n-2)(n+2)})
(frac{1}{n-2}-frac{1}{n+2}=frac{4}{(n-2)(n+2)})
(原式=48*frac{1}{4}(frac{1}{1}-frac{1}{5}+frac{1}{2}-frac{1}{6}+frac{1}{3}-frac{1}{7}+frac{1}{4}-frac{1}{8}...+frac{1}{98}-frac{1}{102}))
(quad=12(frac{1}{1}+frac{1}{2}+frac{1}{3}+...frac{1}{98}-(frac{1}{5}+frac{1}{6}+frac{1}{7}+...frac{1}{102})))
(quad=12(1+frac{1}{2}+frac{1}{3}+frac{1}{4}-frac{1}{99}-frac{1}{100}-frac{1}{101}-frac{1}{102}))
(quad=12(frac{25}{12}-(frac{1}{99}+frac{1}{100}+frac{1}{101}+frac{1}{102})))
(frac{1}{99}+frac{1}{100}+frac{1}{101}+frac{1}{102}≤frac{4}{99})
(原式=25-12*(frac{1}{99}+frac{1}{100}+frac{1}{101}+frac{1}{102})))
(12*(frac{1}{99}+frac{1}{100}+frac{1}{101}+frac{1}{102})≤12*frac{4}{99}=frac{48}{99}≤frac{49.5}{99}=frac{1}{2})
(24.5≤原式≤25)
故,最接近该数的正数是25
总结:发现没法使用错位相减,就会怀疑这个方法不行,可以多写出几项,发现规律
(frac{1}{1}+frac{1}{2}+frac{1}{3}+frac{1}{1}....没有求和公式,所以不可能靠求和来做题。只能是靠抵销的方法)