python的内置模块(重点掌握以下模块)
什么是模块
常见的场景:一个模块就是一个包含了python定义和声明的文件,文件名就是模块名字加上.py的后缀。
但其实import加载的模块分为四个通用类别:
1 使用python编写的代码(.py文件)
2 已被编译为共享库或DLL的C或C++扩展
3 包好一组模块的包
4 使用C编写并链接到python解释器的内置模块
为何要使用模块?
如果你退出python解释器然后重新进入,那么你之前定义的函数或者变量都将丢失,因此我们通常将程序写到文件中以便永久保存下来,需要时就通过python test.py方式去执行,此时test.py被称为脚本script。
随着程序的发展,功能越来越多,为了方便管理,我们通常将程序分成一个个的文件,这样做程序的结构更清晰,方便管理。这时我们不仅仅可以把这些文件当做脚本去执行,还可以把他们当做模块来导入到其他的模块中,实现了功能的重复利用,
(1)random模块
import random
# 此模块提供了和随机数获取相关的方法,这是一个伪随机数
# random.random():获取(0.0,1.0)范围内的浮点数
# a = random.random()
# print(a) # 0.20995790068871445
# print(random.random()) # 0.5998669738158883
# random.randint(a,b):获取这个[a,b]区间的一个随机整数
# c = random.randint(3,5)
# print(c) # 4
# random.uniform(a,b):获取[a,b)范围内的浮点数
# b = random.uniform(3,5) # 3.0224368251871145
# print(b) # 3.0224368251871145
# random.shuffle(x):把参数指定的数据中的元素打乱。混洗。参数是一个可变的数据类型
# lst = [i for i in range(10)]
# random.shuffle(lst)
# print(lst) # [0, 1, 5, 4, 9, 2, 3, 8, 6, 7]
# random.sample(x,k):从x中随机抽取k个数据,组成一个列表返回。
# lst1 = random.sample(lst, 4)
# print(lst1) # [6, 1, 3, 5]
# 随机选择一个返回
# random.choice([1,'23',[4,5]]) # #1或者23或者[4,5]
>>> import random
#随机小数
>>> random.random() # 大于0且小于1之间的小数
0.7664338663654585
>>> random.uniform(1,3) #大于1小于3的小数
1.6270147180533838#恒富:发红包
#随机整数
>>> random.randint(1,5) # 大于等于1且小于等于5之间的整数
>>> random.randrange(1,10,2) # 大于等于1且小于10之间的奇数
#随机选择一个返回
>>> random.choice([1,'23',[4,5]]) # #1或者23或者[4,5]
#随机选择多个返回,返回的个数为函数的第二个参数
>>> random.sample([1,'23',[4,5]],2) # #列表元素任意2个组合
[[4, 5], '23']
#打乱列表顺序
>>> item=[1,3,5,7,9]
>>> random.shuffle(item) # 打乱次序
>>> item
[5, 1, 3, 7, 9]
>>> random.shuffle(item)
>>> item
[5, 9, 7, 1, 3]
练习:生成随机验证码
import random
def v_code():
code = ''
for i in range(5):
num=random.randint(0,9)
alf=chr(random.randint(65,90))
add=random.choice([num,alf])
code="".join(code,str(add))
return code
print(v_code()) # GO3W8
(2)time模块
和时间有关系的我们就要用到时间模块。在使用模块之前,应该首先导入这个模块。
#常用方法
1.time.sleep(secs)
(线程)推迟指定的时间运行。单位为秒。
2.time.time()
获取当前时间戳
表示时间的三种方式
在Python中,通常有这三种方式来表示时间:时间戳、元组(struct_time)、格式化的时间字符串:
(1)时间戳(timestamp) :通常来说,时间戳表示的是从1970年1月1日00:00:00开始按秒计算的偏移量。我们运行“type(time.time())”,返回的是float类型。
(2)格式化的时间字符串(Format String): ‘1999-12-06’
%y 两位数的年份表示(00-99)
%Y 四位数的年份表示(000-9999)
%m 月份(01-12)
%d 月内中的一天(0-31)
%H 24小时制小时数(0-23)
%I 12小时制小时数(01-12)
%M 分钟数(00=59)
%S 秒(00-59)
%a 本地简化星期名称
%A 本地完整星期名称
%b 本地简化的月份名称
%B 本地完整的月份名称
%c 本地相应的日期表示和时间表示
%j 年内的一天(001-366)
%p 本地A.M.或P.M.的等价符
%U 一年中的星期数(00-53)星期天为星期的开始
%w 星期(0-6),星期天为星期的开始
%W 一年中的星期数(00-53)星期一为星期的开始
%x 本地相应的日期表示
%X 本地相应的时间表示
%Z 当前时区的名称
%% %号本身
python中时间日期格式化符号:
(3)元组(struct_time) :struct_time元组共有9个元素共九个元素:(年,月,日,时,分,秒,一年中第几周,一年中第几天等)
索引(Index) | 属性(Attribute) | 值(Values) |
---|---|---|
0 | tm_year(年) | 比如2011 |
1 | tm_mon(月) | 1 - 12 |
2 | tm_mday(日) | 1 - 31 |
3 | tm_hour(时) | 0 - 23 |
4 | tm_min(分) | 0 - 59 |
5 | tm_sec(秒) | 0 - 60 |
6 | tm_wday(weekday) | 0 - 6(0表示周一) |
7 | tm_yday(一年中的第几天) | 1 - 366 |
8 | tm_isdst(是否是夏令时) | 默认为0 |
'''
time模块:和时间相关
这个模块封装了获取时间戳和字符串形式的时间的一些方法
'''
import time
# 获取时间戳 print(time.time()) # 1593600077.0403051 什么是时间戳:从时间元年(1970 1 1 00:00:00)到现在经过的秒数。
# 获取格式化的时间对象:是九个字段组成的。
# 默认参数是当前系统时间的时间戳
print(time.gmtime()) # time.struct_time(tm_year=2020, tm_mon=7, tm_mday=1, tm_hour=10, tm_min=53,tm_sec=43, tm_wday=2, tm_yday=183, tm_isdst=0)
print(time.localtime()) # time.struct_time(tm_year=2020, tm_mon=7,tm_mday=1, tm_hour=18, tm_min=57, tm_sec=1, tm_wday=2, tm_yday=183, tm_isdst=0)
print(time.mktime(time.localtime())) # 1593600077.0把时间戳就保留一位小数
print(time.gmtime(1)) # 时间元年过一秒后,对应的时间对象
# time.struct_time(tm_year=1970, tm_mon=1, tm_mday=1, tm_hour=0, tm_min=0, tm_sec=1, tm_wday=3, tm_yday=1, tm_isdst=0)
print(time.gmtime(time.time()))
# time.struct_time(tm_year=2020, tm_mon=7, tm_mday=2, tm_hour=11, tm_min=37, tm_sec=20, tm_wday=3, tm_yday=184, tm_isdst=0)
# 将格式化时间对象和字符串之间的转换。
#时间字符串
time.strftime("%Y-%m-%d %X")
'2017-07-24 13:54:37'
time.strftime("%Y-%m-%d %H-%M-%S")
'2017-07-24 13-55-04'
# 将字符串转和格式化时间对象之间的转换。
# 格式化时间 ----> 结构化时间
ft = time.strftime('%Y/%m/%d %H:%M:%S')
st = time.strptime(ft,'%Y/%m/%d %H:%M:%S')
print(st)
# 结构化时间 ---> 时间戳 mktime是将结构化时间转换为时间戳。
t = time.mktime(st)
print(t)
# 时间戳 ----> 结构化时间
t = time.time()
st = time.localtime(t)
print(st)
# 结构化时间 ---> 格式化时间
ft = time.strftime('%Y/%m/%d %H:%M:%S',st)
print(ft)
首先,我们先导入time模块,来认识一下python中表示时间的几种格式:
#导入时间模块
>>>import time
#时间戳
>>>time.time()
1500875844.800804
#时间字符串
>>>time.strftime("%Y-%m-%d %X")
'2017-07-24 13:54:37'
>>>time.strftime("%Y-%m-%d %H-%M-%S")
'2017-07-24 13-55-04'
#时间元组:localtime将一个时间戳转换为当前时区的struct_time
time.localtime()
time.struct_time(tm_year=2017, tm_mon=7, tm_mday=24,
tm_hour=13, tm_min=59, tm_sec=37,
tm_wday=0, tm_yday=205, tm_isdst=0)
小结:时间戳是计算机能够识别的时间;时间字符串是人能够看懂的时间;元组则是用来操作时间的
几种格式之间的转换
# 格式化时间 ----> 结构化时间
ft = time.strftime('%Y/%m/%d %H:%M:%S')
st = time.strptime(ft,'%Y/%m/%d %H:%M:%S')
print(st)
# 结构化时间 ---> 时间戳
t = time.mktime(st)
print(t)
# 时间戳 ----> 结构化时间
t = time.time()
st = time.localtime(t)
print(st)
# 结构化时间 ---> 格式化时间
ft = time.strftime('%Y/%m/%d %H:%M:%S',st)
print(ft)
#结构化时间 --> %a %b %d %H:%M:%S %Y串
#time.asctime(结构化时间) 如果不传参数,直接返回当前时间的格式化串
>>>time.asctime(time.localtime(1500000000))
'Fri Jul 14 10:40:00 2017'
>>>time.asctime()
'Mon Jul 24 15:18:33 2017'
#时间戳 --> %a %d %d %H:%M:%S %Y串
#time.ctime(时间戳) 如果不传参数,直接返回当前时间的格式化串
>>>time.ctime()
'Mon Jul 24 15:19:07 2017'
>>>time.ctime(1500000000)
'Fri Jul 14 10:40:00 2017'
t = time.time()
ft = time.ctime(t)
print(ft)
st = time.localtime()
ft = time.asctime(st)
print(ft)
计算时间差:
import time
true_time=time.mktime(time.strptime('2017-09-11 08:30:00','%Y-%m-%d %H:%M:%S'))
time_now=time.mktime(time.strptime('2017-09-12 11:00:00','%Y-%m-%d %H:%M:%S'))
dif_time=time_now-true_time
struct_time=time.gmtime(dif_time)
print('过去了%d年%d月%d天%d小时%d分钟%d秒'%(struct_time.tm_year-1970,struct_time.tm_mon-1,
struct_time.tm_mday-1,struct_time.tm_hour,
struct_time.tm_min,struct_time.tm_sec))
计算时间差
(3)datetime模块
datetime模块:日期时间模块,可以对时间做数学计算。
datetime封装了一些和日期,时间相关的类。这些类包括date、time、datetime、timedelta等。
import datetime
# data类:(年月日)
# print(datetime.date.year)
# print(datetime.date.day)
# print(datetime.date.month)
'''
输出的结果为:
<attribute 'year' of 'datetime.date' objects>
<attribute 'day' of 'datetime.date' objects>
<attribute 'month' of 'datetime.date' objects>
'''
# a = datetime.date(2020, 7, 9) # 获取到'datetime.date' objects
# print(a) # 2020-07-09
# print(a.year) # 获取对象的属性 2020
# print(a.month) # 7
# print(a.day) # 9
# # time类:(时分秒)
# print(datetime.time.hour) # 'datetime.time' objects
# print(datetime.time.minute)
# print(datetime.time.second)
'''
<attribute 'hour' of 'datetime.time' objects>
<attribute 'minute' of 'datetime.time' objects>
<attribute 'second' of 'datetime.time' objects>
'''
# t = datetime.time(10, 48, 59)
# print(t) # 10:48:59
# print(t.hour) # 10
# print(t.minute) # 48
# print(t.second) # 59
# datetime 日期和时期的结合体
# print(datetime.datetime.year) # 'datetime.date' objects
# dt = datetime.datetime(2011, 11, 11, 11, 11, 11)
# print(dt) # 2011-11-11 11:11:11
# datetime中的类,主要是用于数学计算的。
# timedelta类:时间的变化量
td = datetime.timedelta(days=1)
# print(td) # 1 day, 0:00:00
# 参与数学运算,类型与第(另)一个操作数保持一致。
# 创建时间对象
# date,datetime,timedelta
d = datetime.date(2010, 10, 10)
res = d + td
print(res) # 2010-10-11
# 时间变化量的计算是否会产生进位,答案是会产生时间的进位。
# t = datetime.time(10, 10, 59) # unsupported operand type(s) for +: 'datetime.time' and 'datetime.timedelta'
t = datetime.datetime(2010, 10, 10, 10, 10, 59)
td = datetime.timedelta(seconds=1)
res = t + td
print(res) # 2010-10-10 10:11:00
# datatime模块
import datetime
now_time = datetime.datetime.now() # 现在的时间
# 只能调整的字段:weeks days hours minutes seconds
print(datetime.datetime.now() + datetime.timedelta(weeks=3)) # 三周后
print(datetime.datetime.now() + datetime.timedelta(weeks=-3)) # 三周前
print(datetime.datetime.now() + datetime.timedelta(days=-3)) # 三天前
print(datetime.datetime.now() + datetime.timedelta(days=3)) # 三天后
print(datetime.datetime.now() + datetime.timedelta(hours=5)) # 5小时后
print(datetime.datetime.now() + datetime.timedelta(hours=-5)) # 5小时前
print(datetime.datetime.now() + datetime.timedelta(minutes=-15)) # 15分钟前
print(datetime.datetime.now() + datetime.timedelta(minutes=15)) # 15分钟后
print(datetime.datetime.now() + datetime.timedelta(seconds=-70)) # 70秒前
print(datetime.datetime.now() + datetime.timedelta(seconds=70)) # 70秒后
current_time = datetime.datetime.now()
# 可直接调整到指定的 年 月 日 时 分 秒 等
print(current_time.replace(year=1977)) # 直接调整到1977年
print(current_time.replace(month=1)) # 直接调整到1月份
print(current_time.replace(year=1989,month=4,day=25)) # 1989-04-25 18:49:05.898601
# 将时间戳转化成时间
print(datetime.date.fromtimestamp(1232132131)) # 2009-01-17
(4)os和sys模块
os模块是与操作系统交互的一个接口
'''
os:和操作系统相关的操作被封装到这个模块中.操作系统管理的相关路径。
和操作系统相关的文件的操作
'''
import os
# 和文件操作相关,重命名,删除
# os.remove(r'a.txt')
# os.rename(r'a.txt', r'b.txt')
# 删除目录,必须是空目录
# os.removedirs(r'aa')
# 使用shutil模块可以删除带内容的目录
# import shutil
# shutil.rmtree('aa')
# 和路径相关的操作,被封装到另一个子模块中;os.path
# os.path.dirname(__file__)
# res = os.path.dirname(r'd:/aaa/bbb/ccc/a.txt')
# # 不判断路径是否存在
# print(res) # d:/aaa/bbb/ccc,取的是文件的父路径
#
# res = os.path.basename(r'd:/aaa/bbb/ccc/a.txt')
# print(res) # a.txt,取得是路径中的最后一个文件名。
#
# # 把路径中的路径名和文件名切分开,结果为是二元组
# res = os.path.split(r'd:/aaa/bbb/ccc/a.txt')
# print(res) # ('d:/aaa/bbb/ccc', 'a.txt'),相当于上面两个方法组成的元组
#
# # 拼接路径,这里的\表示的是转义
# res = os.path.join('d:\', 'aaa', 'bbb', 'ccc')
# print(res) # d:aaabbccc
#
# res = os.path.abspath(r'd:/a/b/c')
# print(res) # d:ac
# # 如果是/开头的路径,默认是在当前的盘符下。
# res = os.path.abspath(r'/a/b/c')
# # 如果没有/开头的路径,默认是当前项目的路径
# res1 = os.path.abspath(r'a/b/c')
# print(res) # D:ac
# print(res1) # D:Program Files (x86)DjangoProjectsasicday16ac
#
# # 判断是否是绝对路径
# os.path.isabs()
# # 判断是否为目录
# os.path.isdir()
# # 判断是否为文件
# os.path.isfile()
# # 判断这个路径是否存在
# os.path.exists()
# # 判断是不是链接文件,相当于windows的快捷方式
# os.path.islink()
当前执行这个python文件的工作目录相关的工作路径
os.getcwd() 获取当前工作目录,即当前python脚本工作的目录路径
os.chdir("dirname") 改变当前脚本工作目录;相当于shell下cd
os.curdir 返回当前目录: ('.')
os.pardir 获取当前目录的父目录字符串名:('..')#和文件夹相关
os.makedirs('dirname1/dirname2') 可生成多层递归目录
os.removedirs('dirname1') 若目录为空,则删除,并递归到上一级目录,如若也为空,则删除,依此类推
os.mkdir('dirname') 生成单级目录;相当于shell中mkdir dirname
os.rmdir('dirname') 删除单级空目录,若目录不为空则无法删除,报错;相当于shell中rmdir dirname
os.listdir('dirname') 列出指定目录下的所有文件和子目录,包括隐藏文件,并以列表方式打印
# 和文件相关os.remove() 删除一个文件
os.rename("oldname","newname") 重命名文件/目录
os.stat('path/filename') 获取文件/目录信息# 和操作系统差异相关
os.sep 输出操作系统特定的路径分隔符,win下为"\",Linux下为"/"
os.linesep 输出当前平台使用的行终止符,win下为"
",Linux下为"
"
os.pathsep 输出用于分割文件路径的字符串 win下为;,Linux下为:
os.name 输出字符串指示当前使用平台。win->'nt'; Linux->'posix'# 和执行系统命令相关
os.system("bash command") 运行shell命令,直接显示
os.popen("bash command).read() 运行shell命令,获取执行结果
os.environ 获取系统环境变量#path系列,和路径相关os.path.abspath(path) 返回path规范化的绝对路径 os.path.split(path) 将path分割成目录和文件名二元组返回 os.path.dirname(path) 返回path的目录。其实就是os.path.split(path)的第一个元素 os.path.basename(path) 返回path最后的文件名。如何path以/或结尾,那么就会返回空值,即os.path.split(path)的第二个元素。os.path.exists(path) 如果path存在,返回True;如果path不存在,返回Falseos.path.isabs(path) 如果path是绝对路径,返回Trueos.path.isfile(path) 如果path是一个存在的文件,返回True。否则返回Falseos.path.isdir(path) 如果path是一个存在的目录,则返回True。否则返回Falseos.path.join(path1[, path2[, ...]]) 将多个路径组合后返回,第一个绝对路径之前的参数将被忽略os.path.getatime(path) 返回path所指向的文件或者目录的最后访问时间os.path.getmtime(path) 返回path所指向的文件或者目录的最后修改时间os.path.getsize(path) 返回path的大小
sys模块是与python解释器交互的一个接口
sys.argv 命令行参数List,第一个元素是程序本身路径
sys.exit(n) 退出程序,正常退出时exit(0),错误退出sys.exit(1)
sys.version 获取Python解释程序的版本信息
sys.path 返回模块的搜索路径,初始化时使用PYTHONPATH环境变量的值
sys.platform 返回操作系统平台名称
import sys
try:
sys.exit(1)
except SystemExit as e:
print(e)
'''
和python解释器相关的操作
'''
# 获取命令行方式运行的脚本后面的参数
import sys
# print('脚本名:' + sys.argv[0]) # 脚本本身,脚本名
# print('第一个参数:' + sys.argv[1]) # 第一个参数
# print('第二个参数:' + sys.argv[2]) # 第二个参数
# print(type(sys.argv[1])) # str
'''
输出的结果为:
脚本名:os_sys_demo.py
第一个参数:hello
第二个参数:zhouqian
'''
# 解释器寻找模块的路径,这个与解释器相关。与解释器相关的操作。
# sys.path
# 已经加载的模块
# print(sys.modules)
(5)json模块
什么叫序列化——将原本的字典、列表等内容转换成一个字符串的过程就叫做序列化。
比如,我们在python代码中计算的一个数据需要给另外一段程序使用,那我们怎么给?
现在我们能想到的方法就是存在文件里,然后另一个python程序再从文件里读出来。
但是我们都知道,对于文件来说是没有字典这个概念的,所以我们只能将数据转换成字典放到文件中。
你一定会问,将字典转换成一个字符串很简单,就是str(dic)就可以办到了,为什么我们还要学习序列化模块呢?
没错序列化的过程就是从dic 变成str(dic)的过程。现在你可以通过str(dic),将一个名为dic的字典转换成一个字符串,
但是你要怎么把一个字符串转换成字典呢?
聪明的你肯定想到了eval(),如果我们将一个字符串类型的字典str_dic传给eval,就会得到一个返回的字典类型了。
eval()函数十分强大,但是eval是做什么的?e官方demo解释为:将字符串str当成有效的表达式来求值并返回计算结果。
BUT!强大的函数有代价。安全性是其最大的缺点。
想象一下,如果我们从文件中读出的不是一个数据结构,而是一句"删除文件"类似的破坏性语句,那么后果实在不堪设设想。
而使用eval就要担这个风险。
所以,我们并不推荐用eval方法来进行反序列化操作(将str转换成python中的数据结构)
序列化的目的
1、以某种存储形式使自定义对象持久化;
2、将对象从一个地方传递到另一个地方。
3、使程序更具维护性。
Json模块提供了四个功能:dumps、dump、loads、load
import json
dic = {'k1':'v1','k2':'v2','k3':'v3'}
str_dic = json.dumps(dic) #序列化:将一个字典转换成一个字符串
print(type(str_dic),str_dic) #<class 'str'> {"k3": "v3", "k1": "v1", "k2": "v2"}
#注意,json转换完的字符串类型的字典中的字符串是由""表示的
dic2 = json.loads(str_dic) #反序列化:将一个字符串格式的字典转换成一个字典
#注意,要用json的loads功能处理的字符串类型的字典中的字符串必须由""表示
print(type(dic2),dic2) #<class 'dict'> {'k1': 'v1', 'k2': 'v2', 'k3': 'v3'}
list_dic = [1,['a','b','c'],3,{'k1':'v1','k2':'v2'}]
str_dic = json.dumps(list_dic) #也可以处理嵌套的数据类型
print(type(str_dic),str_dic) #<class 'str'> [1, ["a", "b", "c"], 3, {"k1": "v1", "k2": "v2"}]
list_dic2 = json.loads(str_dic)
print(type(list_dic2),list_dic2) #<class 'list'> [1, ['a', 'b', 'c'], 3, {'k1': 'v1', 'k2': 'v2'}]
import json
f = open('json_file','w')
dic = {'k1':'v1','k2':'v2','k3':'v3'}
json.dump(dic,f) #dump方法接收一个文件句柄,直接将字典转换成json字符串写入文件
f.close()
f = open('json_file')
dic2 = json.load(f) #load方法接收一个文件句柄,直接将文件中的json字符串转换成数据结构返回
f.close()
print(type(dic2),dic2)
import json
f = open('file','w')
json.dump({'国籍':'中国'},f)
ret = json.dumps({'国籍':'中国'})
f.write(ret+'
')
json.dump({'国籍':'美国'},f,ensure_ascii=False)
ret = json.dumps({'国籍':'美国'},ensure_ascii=False)
f.write(ret+'
')
f.close()
Serialize obj to a JSON formatted str.(字符串表示的json对象)
Skipkeys:默认值是False,如果dict的keys内的数据不是python的基本类型(str,unicode,int,long,float,bool,None),设置为False时,就会报TypeError的错误。此时设置成True,则会跳过这类key
ensure_ascii:,当它为True的时候,所有非ASCII码字符显示为uXXXX序列,只需在dump时将ensure_ascii设置为False即可,此时存入json的中文即可正常显示。)
If check_circular is false, then the circular reference check for container types will be skipped and a circular reference will result in an OverflowError (or worse).
If allow_nan is false, then it will be a ValueError to serialize out of range float values (nan, inf, -inf) in strict compliance of the JSON specification, instead of using the JavaScript equivalents (NaN, Infinity, -Infinity).
indent:应该是一个非负的整型,如果是0就是顶格分行显示,如果为空就是一行最紧凑显示,否则会换行且按照indent的数值显示前面的空白分行显示,这样打印出来的json数据也叫pretty-printed json
separators:分隔符,实际上是(item_separator, dict_separator)的一个元组,默认的就是(‘,’,’:’);这表示dictionary内keys之间用“,”隔开,而KEY和value之间用“:”隔开。
default(obj) is a function that should return a serializable version of obj or raise TypeError. The default simply raises TypeError.
sort_keys:将数据根据keys的值进行排序。
To use a custom JSONEncoder subclass (e.g. one that overrides the .default() method to serialize additional types), specify it with the cls kwarg; otherwise JSONEncoder is used.
import json
data = {'username':['李华','二愣子'],'sex':'male','age':16}
json_dic2 = json.dumps(data,sort_keys=True,indent=2,separators=(',',':'),ensure_ascii=False)
print(json_dic2)
(6)pickle模块
用于序列化的两个模块
- json,用于字符串 和 python数据类型间进行转换
- pickle,用于python特有的类型 和 python的数据类型间进行转换
pickle模块提供了四个功能:dumps、dump(序列化,存)、loads(反序列化,读)、load (不仅可以序列化字典,列表...可以把python中任意的数据类型序列化)
import pickle
dic = {'k1':'v1','k2':'v2','k3':'v3'}
str_dic = pickle.dumps(dic)
print(str_dic) #一串二进制内容
dic2 = pickle.loads(str_dic)
print(dic2) #字典
import time
struct_time = time.localtime(1000000000)
print(struct_time)
f = open('pickle_file','wb')
pickle.dump(struct_time,f)
f.close()
f = open('pickle_file','rb')
struct_time2 = pickle.load(f)
print(struct_time2.tm_year)
这时候机智的你又要说了,既然pickle如此强大,为什么还要学json呢?
这里我们要说明一下,json是一种所有的语言都可以识别的数据结构。
如果我们将一个字典或者序列化成了一个json存在文件里,那么java代码或者js代码也可以拿来用。
但是如果我们用pickle进行序列化,其他语言就不能读懂这是什么了~
所以,如果你序列化的内容是列表或者字典,我们非常推荐你使用json模块
但如果出于某种原因你不得不序列化其他的数据类型,而未来你还会用python对这个数据进行反序列化的话,那么就可以使用pickle
(7)hashlib模块(md5加密)
'''
封装一些用于加密的类。
'''
md5加密的目的:适用于判断和验证,而并非解密。
特点:
1.把一个大的数据,切分成不同的小块,分别对不同的快进行加密,再汇总结果,和直接对整体数据加密的结果是一样的。(一致的)
2.单向加密不可逆。
3.原始数据的一小点变化,将导致加密结果有非常大的差异。'雪崩'
md5的使用方式,加密算法
import hashlib
# 获取一个加密的对象
m = hashlib.md5()
# 使用加密对象的update方法进行加密,可以累积解密多次。在上一次加密的结果上再次的加密。
m.update('abc中文'.encode('utf-8'))
m.update('def'.encode('utf-8'))
# 通过hexdigest方法或者是digest()获取加密结果
res = m.hexdigest() # 32个16进制数
# res = m.digest() # 这种方式的加密结果:b'/x1bn)Nrxd2Zxe1x96xfeJxc2xd2}xe6'
print(res) # 1af98e0571f7a24468a85f91b908d335 再次加密的结果变为:2f1b6e294e72d25ae196fe4ac2d27de6
'''
主要用于验证,而非解密。(记住),雪崩效应
给一个数据加密,
验证:用另外一个数据的加密结果与第一次加密的结果对比。
如果结果相同,说明原文相同。
如果结果不相同,说明原文不相同。
'''
# 不同加密算法:实际上是加密结果的长度不相同。
s = hashlib.sha224()
s.update(b'abc')
print(s.hexdigest()) # 56个16进制数
# 23097d223405d8228642a477bda255b32aadbce4bda0b3f7e36c9da7
# 在创建加密对象时,可以指定参数,称作为盐(salt)
m = hashlib.md5(b'abc')
print(m.hexdigest())
m = hashlib.md5()
m.update(b'abc')
print(m.hexdigest())
# 上面两种输出的结果是一样的,结果如下所示:
# 900150983cd24fb0d6963f7d28e17f72
# 900150983cd24fb0d6963f7d28e17f72
m = hashlib.md5()
m.update(b'abc')
m.update(b'def')
print(m.hexdigest())
m = hashlib.md5()
m.update(b'abcdef')
print(m.hexdigest())
# 上面两种输出的结果是一样的,结果如下所示:
# e80b5017098950fc58aad83c8c14978e
# e80b5017098950fc58aad83c8c14978e
(8)collections模块(了解)
在内置数据类型(dict、list、set、tuple)的基础上,collections模块还提供了几个额外的数据类型:Counter、deque、defaultdict、namedtuple和OrderedDict等。
1.namedtuple: 生成可以使用名字来访问元素内容的tuple
2.deque: 双端队列,可以快速的从另外一侧追加和推出对象
3.Counter: 计数器,主要用来计数
4.OrderedDict: 有序字典
5.defaultdict: 带有默认值的字典
1)namedtuple
我们知道tuple
可以表示不变集合,例如,一个点的二维坐标就可以表示成:
>>> p = (1, 2)
但是,看到(1, 2),很难看出这个tuple是用来表示一个坐标的。
这时,namedtuple
就派上了用场:
>>> from collections import namedtuple
>>> Point = namedtuple('Point', ['x', 'y'])
>>> p = Point(1, 2)
>>> p.x
1
>>> p.y
2
类似的,如果要用坐标和半径表示一个圆,也可以用namedtuple
定义:
# namedtuple('名称', [属性list]):
Circle = namedtuple('Circle', ['x', 'y', 'r'])
2)deque
使用list存储数据时,按索引访问元素很快,但是插入和删除元素就很慢了,因为list是线性存储,数据量大的时候,插入和删除效率很低。
deque是为了高效实现插入和删除操作的双向列表,适合用于队列和栈:
>>> from collections import deque
>>> q = deque(['a', 'b', 'c'])
>>> q.append('x')
>>> q.appendleft('y')
>>> q
deque(['y', 'a', 'b', 'c', 'x'])
deque除了实现list的append()
和pop()
外,还支持appendleft()
和popleft()
,这样就可以非常高效地往头部添加或删除元素。
3)OrderedDict
使用dict时,Key是无序的。在对dict做迭代时,我们无法确定Key的顺序。
如果要保持Key的顺序,可以用OrderedDict
:
>>> from collections import OrderedDict
>>> d = dict([('a', 1), ('b', 2), ('c', 3)])
>>> d # dict的Key是无序的
{'a': 1, 'c': 3, 'b': 2}
>>> od = OrderedDict([('a', 1), ('b', 2), ('c', 3)])
>>> od # OrderedDict的Key是有序的
OrderedDict([('a', 1), ('b', 2), ('c', 3)])
注意,OrderedDict
的Key会按照插入的顺序排列,不是Key本身排序:
>>> od = OrderedDict()
>>> od['z'] = 1
>>> od['y'] = 2
>>> od['x'] = 3
>>> od.keys() # 按照插入的Key的顺序返回
['z', 'y', 'x']
4)defaultdict
有如下值集合 [``11``,``22``,``33``,``44``,``55``,``66``,``77``,``88``,``99``,``90.``..],将所有大于 ``66` `的值保存至字典的第一个key中,将小于 ``66` `的值保存至第二个key的值中。
即: {``'k1'``: 大于``66` `, ``'k2'``: 小于``66``}
values = [11, 22, 33,44,55,66,77,88,99,90]
my_dict = {}
for value in values:
if value>66:
if my_dict.has_key('k1'):
my_dict['k1'].append(value)
else:
my_dict['k1'] = [value]
else:
if my_dict.has_key('k2'):
my_dict['k2'].append(value)
else:
my_dict['k2'] = [value]
from collections import defaultdict
values = [11, 22, 33,44,55,66,77,88,99,90]
my_dict = defaultdict(list)
for value in values:
if value>66:
my_dict['k1'].append(value)
else:
my_dict['k2'].append(value)
print(my_dict)
# 输出的结果为:defaultdict(<class 'list'>, {'k2': [11, 22, 33, 44, 55, 66], 'k1': [77, 88, 99, 90]})
使用dict
时,如果引用的Key不存在,就会抛出KeyError
。如果希望key不存在时,返回一个默认值,就可以用defaultdict
:
>>> from collections import defaultdict
>>> dd = defaultdict(lambda: 'N/A')
>>> dd['key1'] = 'abc'
>>> dd['key1'] # key1存在
'abc'
>>> dd['key2'] # key2不存在,返回默认值
'N/A'
5)Counter
Counter类的目的是用来跟踪值出现的次数。它是一个无序的容器类型,以字典的键值对形式存储,其中元素作为key,其计数作为value。计数值可以是任意的Interger(包括0和负数)。Counter类和其他语言的bags或multisets很相似。
c = Counter('abcdeabcdabcaba')
print c
输出:Counter({'a': 5, 'b': 4, 'c': 3, 'd': 2, 'e': 1})