zoukankan      html  css  js  c++  java
  • Kernel PCA

    % Kernel PCA toy example for k(x,y)=exp(-||x-y||^2/rbf_var), cf. Fig. 4 in 
    % @article{SchSmoMue98,
    %   author    = "B.~{Sch\"olkopf} and A.~Smola and K.-R.~{M\"uller}",
    %   title     = "Nonlinear component analysis as a kernel Eigenvalue problem",
    %   journal =         {Neural Computation},
    %   volume    = 10,
    %   issue     = 5,
    %   pages     = "1299 -- 1319",
    %   year      = 1998}
    % This file can be downloaded from http://www.kernel-machines.org.
    % Last modified: 4 July 2003


    % parameters
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    rbf_var = 0.1;
    xnum = 4;
    ynum = 2;
    max_ev = xnum*ynum;
    % (extract features from the first <max_ev> Eigenvectors)
    x_test_num = 15;
    y_test_num = 15;
    cluster_pos = [-0.5 -0.2; 0 0.6; 0.5 0];
    cluster_size = 30;

    % generate a toy data set
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    num_clusters = size(cluster_pos,1);
    train_num = num_clusters*cluster_size;
    patterns = zeros(train_num, 2);
    range = 1;
    randn('seed', 0);
    for i=1:num_clusters,
      patterns((i-1)*cluster_size+1:i*cluster_size,1) = cluster_pos(i,1)+0.1*randn(cluster_size,1);
      patterns((i-1)*cluster_size+1:i*cluster_size,2) = cluster_pos(i,2)+0.1*randn(cluster_size,1);
    end
    test_num = x_test_num*y_test_num;
    x_range = -range:(2*range/(x_test_num - 1)):range;
    y_offset = 0.5;
    y_range = -range+ y_offset:(2*range/(y_test_num - 1)):range+ y_offset;
    [xs, ys] = meshgrid(x_range, y_range);
    test_patterns(:, 1) = xs(:);
    test_patterns(:, 2) = ys(:);
    cov_size = train_num;  % use all patterns to compute the covariance matrix

    % carry out Kernel PCA
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    for i=1:cov_size,
      for j=i:cov_size,
        K(i,j) = exp(-norm(patterns(i,:)-patterns(j,:))^2/rbf_var);
        K(j,i) = K(i,j);
      end
    end
    unit = ones(cov_size, cov_size)/cov_size;
    % centering in feature space!
    K_n = K - unit*K - K*unit + unit*K*unit;

    [evecs,evals] = eig(K_n);
    evals = real(diag(evals));
    for i=1:cov_size,
      evecs(:,i) = evecs(:,i)/(sqrt(evals(i)));
    end

    % extract features
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    %  do not need the following here - only need test point features
    %unit_train = ones(train_num,cov_size)/cov_size;
    %for i=1:train_num,
    %  for j=1:cov_size,
    %    K_train(i,j) = exp(-norm(patterns(i,:)-patterns(j,:))^2/rbf_var);
    %  end
    %end
    %K_train_n = K_train - unit_train*K - K_train*unit + unit_train*K*unit;
    �atures = zeros(train_num, max_ev);
    �atures = K_train_n * evecs(:,1:max_ev);

    unit_test = ones(test_num,cov_size)/cov_size;
    K_test = zeros(test_num,cov_size);
    for i=1:test_num,
      for j=1:cov_size,
        K_test(i,j) = exp(-norm(test_patterns(i,:)-patterns(j,:))^2/rbf_var);
      end
    end
    K_test_n = K_test - unit_test*K - K_test*unit + unit_test*K*unit;
    test_features = zeros(test_num, max_ev);
    test_features = K_test_n * evecs(:,1:max_ev);

    % plot it
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    figure(1); clf
    for n = 1:max_ev,
      subplot(ynum, xnum, n);
      axis([-range range -range+y_offset range+y_offset]);
      imag = reshape(test_features(:,n), y_test_num, x_test_num);
      axis('xy')
      colormap(gray);
      hold on;
      pcolor(x_range, y_range, imag);
      shading interp
      contour(x_range, y_range, imag, 9, 'b');
      plot(patterns(:,1), patterns(:,2), 'r.')
      text(-1,1.65,sprintf('Eigenvalue=%4.3f', evals(n)));
      hold off;
    end

  • 相关阅读:
    CruiseControl.NET 三言两语
    在MFC程序中增加控制台
    VS2005 编译Release版本出现清单文件的错误
    内存泄露问题
    软件设计原则
    boost::shared_ptr 分析与实现
    corelDraw 的CDR格式解析
    13. 量词操作符—【LINQ标准查询操作符】
    SQL SERVER执行查询的顺序
    CSLA命令对象的简单封装
  • 原文地址:https://www.cnblogs.com/stucp/p/2743695.html
Copyright © 2011-2022 走看看