zoukankan      html  css  js  c++  java
  • Tensorflow中使用CNN实现Mnist手写体识别

      本文参考Yann LeCun的LeNet5经典架构,稍加ps得到下面适用于本手写识别的cnn结构,构造一个两层卷积神经网络,神经网络的结构如下图所示:

      输入-卷积-pooling-卷积-pooling-全连接层-Dropout-Softmax输出

      

      第一层卷积利用5*5的patch,32个卷积核,可以计算出32个特征。然后进行maxpooling。第二层卷积利用5*5的patch,64个卷积核,可以计算出64个特征。然后进行max pooling。卷积核的个数是我们自己设定,可以增加卷积核数目提高分类精度,但是那样会增加更大参数,提高计算成本。

      这样输入是分辨率为28*28的图片。利用5*5的patch进行卷积。我们的卷积使用1步长(stride size),0填充模块(zero padded),这样得到的输出和输入是同一个大小。经过第一层卷积之后,卷积特征大小为28*28。然后通过ReLU函数激活。我们的pooling用简单传统的2x2大小的模板做max pooling,这样pooling后得到14*14大小的特征。经过第二层卷积后,卷积特征大小为14*14,然后通过ReLU函数激活,再经过pooling后得到特征大小为7*7。

      现在,图片尺寸减小到7x7,我们加入一个有1024个神经元的全连接层,用于处理整个图片。我们把池化层输出的张量展开成一些向量,乘上权重矩阵,加上偏置,然后对其使用ReLU。

      为了避免过拟合,在全连接层输出接上dropout层。Dropout层在训练时屏蔽一半的神经元。

    1、输入数据

      直接使用tensorflow中的模块,导入输入数据:

        from tensorflow.examples.tutorials.mnist import input_data

        mnist = input_data.read_data_sets('MNIST_data', one_hot=True) 

      或者使用官方提供的input_data.py文件下载mnist数据

    2、启动session

      (1)交互方式启动session

        sess = tf.InteractiveSession()

      (2)一般方式启动session

        sess = tf.Session()

      ps: 使用交互方式不用提前构建计算图,而使用一般方式必须提前构建好计算图才能启动session

    3、权重和偏置初始化

      权重初始化的原则:应该加入少量的噪声来打破对称性并且要避免0梯度(初始化为0)

      权重初始化一般选择均匀分布或是正态分布

      定义权重初始化方法

       def weight_variable(shape):
        #截尾正态分布,stddev是正态分布的标准偏差
        initial = tf.truncated_normal(shape=shape, stddev=0.1)
        return tf.Variable(initial)

      定义偏置初始化方法

      def bias_variable(shape):
        initial = tf.constant(0.1, shape=shape)
        return tf.Variable(initial)

    4、定义卷积和池化方法

      TensorFlow在卷积和Pooling上有很强的灵活性。我们怎么处理边界?步长应该设多大?在这个实例里,我们的卷积使用1步长(stride size),0填充模块(zero padded),保证输出和输入是同一个大小。我们的pooling用简单传统的2x2大小的模板做maxpooling。为了代码更简洁,我们把这部分抽象成一个函数。

      def conv2d(x, W):
        return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1],  padding='SAME')
      def max_pool_2x2(x):
        return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')

    5、直接贴完整代码

    from tensorflow.examples.tutorials.mnist import input_data
    import tensorflow as tf
    #加载数据集
    mnist = input_data.read_data_sets('MNIST_data', one_hot=True)

    #以交互式方式启动session
    #如果不使用交互式session,则在启动session前必须
    # 构建整个计算图,才能启动该计算图
    sess = tf.InteractiveSession()

    """构建计算图"""
    #通过占位符来为输入图像和目标输出类别创建节点
    #shape参数是可选的,有了它tensorflow可以自动捕获维度不一致导致的错误
    x = tf.placeholder("float", shape=[None, 784]) #原始输入
    y_ = tf.placeholder("float", shape=[None, 10]) #目标值

    #为了不在建立模型的时候反复做初始化操作,
    # 我们定义两个函数用于初始化
    def weight_variable(shape):
    #截尾正态分布,stddev是正态分布的标准偏差
    initial = tf.truncated_normal(shape=shape, stddev=0.1)
    return tf.Variable(initial)
    def bias_variable(shape):
    initial = tf.constant(0.1, shape=shape)
    return tf.Variable(initial)

    #卷积核池化,步长为1,0边距
    def conv2d(x, W):
    return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
    def max_pool_2x2(x):
    return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
    strides=[1, 2, 2, 1], padding='SAME')

    """第一层卷积"""
    #由一个卷积和一个最大池化组成。滤波器5x5中算出32个特征,是因为使用32个滤波器进行卷积
    #卷积的权重张量形状是[5, 5, 1, 32],1是输入通道的个数,32是输出通道个数
    W_conv1 = weight_variable([5, 5, 1, 32])
    #每一个输出通道都有一个偏置量
    b_conv1 = bias_variable([32])

    #位了使用卷积,必须将输入转换成4维向量,2、3维表示图片的宽、高
    #最后一维表示图片的颜色通道(因为是灰度图像所以通道数维1,RGB图像通道数为3)
    x_image = tf.reshape(x, [-1, 28, 28, 1])

    #第一层的卷积结果,使用Relu作为激活函数
    h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1))
    #第一层卷积后的池化结果
    h_pool1 = max_pool_2x2(h_conv1)

    """第二层卷积"""
    W_conv2 = weight_variable([5, 5, 32, 64])
    b_conv2 = bias_variable([64])
    h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
    h_pool2 = max_pool_2x2(h_conv2)

    """全连接层"""
    #图片尺寸减小到7*7,加入一个有1024个神经元的全连接层
    W_fc1 = weight_variable([7*7*64, 1024])
    b_fc1 = bias_variable([1024])
    #将最后的池化层输出张量reshape成一维向量
    h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
    #全连接层的输出
    h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

    """使用Dropout减少过拟合"""
    #使用placeholder占位符来表示神经元的输出在dropout中保持不变的概率
    #在训练的过程中启用dropout,在测试过程中关闭dropout
    keep_prob = tf.placeholder("float")
    h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

    """输出层"""
    W_fc2 = weight_variable([1024, 10])
    b_fc2 = bias_variable([10])
    #模型预测输出
    y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)

    #交叉熵损失
    cross_entropy = -tf.reduce_sum(y_ * tf.log(y_conv))

    #模型训练,使用AdamOptimizer来做梯度最速下降
    train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)

    #正确预测,得到True或False的List
    correct_prediction = tf.equal(tf.argmax(y_, 1), tf.argmax(y_conv, 1))
    #将布尔值转化成浮点数,取平均值作为精确度
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))

    #在session中先初始化变量才能在session中调用
    sess.run(tf.initialize_all_variables())

    #迭代优化模型
    for i in range(20000):
    #每次取50个样本进行训练
    batch = mnist.train.next_batch(50)
    if i%100 == 0:
    train_accuracy = accuracy.eval(feed_dict={
    x: batch[0], y_:batch[1], keep_prob:1.0}) #模型中间不使用dropout
    print("step %d, training accuracy %g" % (i, train_accuracy))
    train_step.run(feed_dict={x:batch[0], y_:batch[1], keep_prob:0.5})
    print("test accuracy %g" % accuracy.eval(feed_dict={
    x:mnist.test.images, y_:mnist.test.labels, keep_prob:1.0}))

    6、input_data.py文件
      
    注:python3中没有xrange,其range与python2中的xrange作用相同

    #!/urs/bin/env python
    # -*- coding:utf-8 -*-
    # Copyright 2015 Google Inc. All Rights Reserved.
    #
    # Licensed under the Apache License, Version 2.0 (the "License");
    # you may not use this file except in compliance with the License.
    # You may obtain a copy of the License at
    #
    # http://www.apache.org/licenses/LICENSE-2.0
    #
    # Unless required by applicable law or agreed to in writing, software
    # distributed under the License is distributed on an "AS IS" BASIS,
    # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    # See the License for the specific language governing permissions and
    # limitations under the License.
    # ==============================================================================
    """Functions for downloading and reading MNIST data."""
    from __future__ import absolute_import
    from __future__ import division
    from __future__ import print_function
    import gzip
    import os
    import tensorflow.python.platform
    import numpy
    import urllib
    import tensorflow as tf

    SOURCE_URL = 'http://yann.lecun.com/exdb/mnist/'


    def maybe_download(filename, work_directory):
    """Download the data from Yann's website, unless it's already here."""
    if not os.path.exists(work_directory):
    os.mkdir(work_directory)
    filepath = os.path.join(work_directory, filename)
    if not os.path.exists(filepath):
    filepath, _ = urllib.request.urlretrieve(SOURCE_URL + filename, filepath)
    statinfo = os.stat(filepath)
    print('Successfully downloaded', filename, statinfo.st_size, 'bytes.')
    return filepath


    def _read32(bytestream):
    dt = numpy.dtype(numpy.uint32).newbyteorder('>')
    return numpy.frombuffer(bytestream.read(4), dtype=dt)[0]


    def extract_images(filename):
    """Extract the images into a 4D uint8 numpy array [index, y, x, depth]."""
    print('Extracting', filename)
    with gzip.open(filename) as bytestream:
    magic = _read32(bytestream)
    if magic != 2051:
    raise ValueError(
    'Invalid magic number %d in MNIST image file: %s' %
    (magic, filename))
    num_images = _read32(bytestream)
    rows = _read32(bytestream)
    cols = _read32(bytestream)
    buf = bytestream.read(rows * cols * num_images)
    data = numpy.frombuffer(buf, dtype=numpy.uint8)
    data = data.reshape(num_images, rows, cols, 1)
    return data


    def dense_to_one_hot(labels_dense, num_classes=10):
    """Convert class labels from scalars to one-hot vectors."""
    num_labels = labels_dense.shape[0]
    index_offset = numpy.arange(num_labels) * num_classes
    labels_one_hot = numpy.zeros((num_labels, num_classes))
    labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1
    return labels_one_hot


    def extract_labels(filename, one_hot=False):
    """Extract the labels into a 1D uint8 numpy array [index]."""
    print('Extracting', filename)
    with gzip.open(filename) as bytestream:
    magic = _read32(bytestream)
    if magic != 2049:
    raise ValueError(
    'Invalid magic number %d in MNIST label file: %s' %
    (magic, filename))
    num_items = _read32(bytestream)
    buf = bytestream.read(num_items)
    labels = numpy.frombuffer(buf, dtype=numpy.uint8)
    if one_hot:
    return dense_to_one_hot(labels)
    return labels


    class DataSet(object):
    def __init__(self, images, labels, fake_data=False, one_hot=False,
    dtype=tf.float32):
    """Construct a DataSet.
    one_hot arg is used only if fake_data is true. `dtype` can be either
    `uint8` to leave the input as `[0, 255]`, or `float32` to rescale into
    `[0, 1]`.
    """
    dtype = tf.as_dtype(dtype).base_dtype
    if dtype not in (tf.uint8, tf.float32):
    raise TypeError('Invalid image dtype %r, expected uint8 or float32' %
    dtype)
    if fake_data:
    self._num_examples = 10000
    self.one_hot = one_hot
    else:
    assert images.shape[0] == labels.shape[0], (
    'images.shape: %s labels.shape: %s' % (images.shape,
    labels.shape))
    self._num_examples = images.shape[0]
    # Convert shape from [num examples, rows, columns, depth]
    # to [num examples, rows*columns] (assuming depth == 1)
    assert images.shape[3] == 1
    images = images.reshape(images.shape[0],
    images.shape[1] * images.shape[2])
    if dtype == tf.float32:
    # Convert from [0, 255] -> [0.0, 1.0].
    images = images.astype(numpy.float32)
    images = numpy.multiply(images, 1.0 / 255.0)
    self._images = images
    self._labels = labels
    self._epochs_completed = 0
    self._index_in_epoch = 0

    @property
    def images(self):
    return self._images

    @property
    def labels(self):
    return self._labels

    @property
    def num_examples(self):
    return self._num_examples

    @property
    def epochs_completed(self):
    return self._epochs_completed

    def next_batch(self, batch_size, fake_data=False):
    """Return the next `batch_size` examples from this data set."""
    if fake_data:
    fake_image = [1] * 784
    if self.one_hot:
    fake_label = [1] + [0] * 9
    else:
    fake_label = 0
    return [fake_image for _ in range(batch_size)], [
    fake_label for _ in range(batch_size)]
    start = self._index_in_epoch
    self._index_in_epoch += batch_size
    if self._index_in_epoch > self._num_examples: # Finished epoch self._epochs_completed += 1 # Shuffle the data perm = numpy.arange(self._num_examples) numpy.random.shuffle(perm) self._images = self._images[perm] self._labels = self._labels[perm] # Start next epoch start = 0 self._index_in_epoch = batch_size assert batch_size <= self._num_examples end = self._index_in_epoch return self._images[start:end], self._labels[start:end]def read_data_sets(train_dir, fake_data=False, one_hot=False, dtype=tf.float32): class DataSets(object): pass data_sets = DataSets() if fake_data: def fake(): return DataSet([], [], fake_data=True, one_hot=one_hot, dtype=dtype) data_sets.train = fake() data_sets.validation = fake() data_sets.test = fake() return data_sets TRAIN_IMAGES = 'train-images-idx3-ubyte.gz' TRAIN_LABELS = 'train-labels-idx1-ubyte.gz' TEST_IMAGES = 't10k-images-idx3-ubyte.gz' TEST_LABELS = 't10k-labels-idx1-ubyte.gz' VALIDATION_SIZE = 5000 local_file = maybe_download(TRAIN_IMAGES, train_dir) train_images = extract_images(local_file) local_file = maybe_download(TRAIN_LABELS, train_dir) train_labels = extract_labels(local_file, one_hot=one_hot) local_file = maybe_download(TEST_IMAGES, train_dir) test_images = extract_images(local_file) local_file = maybe_download(TEST_LABELS, train_dir) test_labels = extract_labels(local_file, one_hot=one_hot) validation_images = train_images[:VALIDATION_SIZE] validation_labels = train_labels[:VALIDATION_SIZE] train_images = train_images[VALIDATION_SIZE:] train_labels = train_labels[VALIDATION_SIZE:] data_sets.train = DataSet(train_images, train_labels, dtype=dtype) data_sets.validation = DataSet(validation_images, validation_labels, dtype=dtype) data_sets.test = DataSet(test_images, test_labels, dtype=dtype) return data_sets
     
  • 相关阅读:
    C#输出JS代码封装类Alart
    我的汇编学习之路(2)win8(64位)下安装debug
    .NET使用一般处理程序生成验证码
    ?运算符(null合并运算符)和三木运算符
    讲解:小菜鸟自制的.NET实体类生成器
    我的汇编学习之路(1)进制转换
    未来
    callee,caller区别
    string::size_type
    ubuntu 12.04 LTS u盘安装
  • 原文地址:https://www.cnblogs.com/studyDetail/p/6498369.html
Copyright © 2011-2022 走看看