zoukankan      html  css  js  c++  java
  • 暑假第六周

    这周主要了解学习了,有关数字识别和验证码识别的Python环境TensorFlow构架的代码,具体如下:

    一、数字识别:

    # coding=utf-8
    import tensorflow as tf
    import input_data
    mnist = input_data.read_data_sets('MNIST', one_hot=True)
    weights = tf.Variable(tf.zeros([784, 10]))
    biases = tf.Variable(tf.zeros([10]))
    x = tf.placeholder("float", [None, 784])
    y = tf.nn.softmax(tf.matmul(x, weights) + biases)
    y_real = tf.placeholder("float", [None, 10])
    cross_entropy = -tf.reduce_sum(y_real * tf.log(y))
    train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)
    init = tf.initialize_all_variables()
    sess = tf.Session()
    sess.run(init)
    for i in range(1000):
        batch_xs, batch_ys = mnist.train.next_batch(100)
        sess.run(train_step, feed_dict={x: batch_xs, y_real:batch_ys})

        if i % 100 == 0:
            correct_prediction = tf.equal(tf.argmax(y, 1), tf.arg_max(y_real, 1))
            accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
            print sess.run(accuracy, feed_dict={x: mnist.test.images, y_real: mnist.test.labels})

    二、验证码识别

    验证码生成:

    from captcha.image import ImageCaptcha
    import numpy as np
    from PIL import Image
    import sys
    import random
    number = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']
    def random_captcha_text(char_set=number, captcha_size=4):
        captcha_text = []
        for i in range(captcha_size):

            c = random.choice(char_set)
            captcha_text.append(c)
        return captcha_text
    def gen_captcha_text_and_image():
        image = ImageCaptcha()
        captcha_text = random_captcha_text()
        captcha_text = ''.join(captcha_text)
        image.write(captcha_text, './image/' + captcha_text + '.png')  

    num = 10000
    if __name__ == '__main__':
        for i in range(num):
            gen_captcha_text_and_image()
            sys.stdout.write(' >>creating images %d/%d' % (i + 1, num))
            sys.stdout.flush()
        sys.stdout.write(' ')
        sys.stdout.flush()
        print('生成完毕')

    生成tfrecord:

    import tensorflow as tf
    import numpy as np
    from PIL import Image
    import os
    import random
    import sys
    _NUM_TEST = 500
    _RANDOM_SEED = 0
    DATASET_DIR = './image/'
    TFRECORD_DIR = './image/tfr/
    def _dataset_exists(dataset_dir):
        for split_name in ['train', 'test']:
            output_filename = os.path.join(dataset_dir, split_name + 'tfrecords')
            if not tf.gfile.Exists(output_filename):
                return False
        return True
    def _get_filenames_and_classes(dataset_dir):
        photo_filenames = []
        for filename in os.listdir(dataset_dir):
            path = os.path.join(dataset_dir, filename)
            photo_filenames.append(path)
        return photo_filenames
    def int64_feature(values):
        if not isinstance(values, (tuple, list)):
            values = [values]
        return tf.train.Feature(int64_list=tf.train.Int64List(value=values))
    def bytes_feature(values):
        return tf.train.Feature(bytes_list=tf.train.BytesList(value=[values]))
    def image_to_tfexample(image_data, label0, label1, label2, label3):
        return tf.train.Example(features=tf.train.Features(feature={
            'image': bytes_feature(image_data),
            'label0': int64_feature(label0),
            'label1': int64_feature(label1),
            'label2': int64_feature(label2),
            'label3': int64_feature(label3),
        }))
    def _convert_dataset(split_name, filenames, dataset_dir):
        assert split_name in ['train', 'test']
        with tf.Session() as sess:
            output_filename = os.path.join(TFRECORD_DIR, split_name + '.tfrecords')
            with tf.python_io.TFRecordWriter(output_filename) as tfrecord_writer:
                for i, filename in enumerate(filenames):
                    try:
                        sys.stdout.write(' >>转换图片 %d / %d' % (i + 1, len(filenames)))
                        sys.stdout.flush()
                        image_data = Image.open(filename)
                        image_data = image_data.resize((224, 224))                 
                        image_data = np.array(image_data.convert('L'))
                        image_data = image_data.tobytes()             
                        labels = filename.split('/')[-1][0:4]
                        num_labels = []
                        for j in range(4):
                            num_labels.append(int(labels[j]))
                        example = image_to_tfexample(image_data, num_labels[0], num_labels[1], num_labels[2], num_labels[3])
                        tfrecord_writer.write(example.SerializeToString())
                    except IOError as e:

            sys.stdout.flush()  
    if _dataset_exists(DATASET_DIR):
        print('file already exists')
    else:
        photo_filenames = _get_filenames_and_classes(DATASET_DIR)
        random.seed(_RANDOM_SEED)
        random.shuffle(photo_filenames)
        training_filenames = photo_filenames[_NUM_TEST:]
        testing_filenames = photo_filenames[:_NUM_TEST]
        _convert_dataset('train', training_filenames, DATASET_DIR)
        _convert_dataset('test', testing_filenames, DATASET_DIR)

    验证码识别:

    import os
    import tensorflow as tf
    from PIL import Image
    import numpy as np
    from nets import nets_factory
    import matplotlib.pyplot as plt
    CHAR_NUM = 10
    IMAGE_HEIGHT = 60
    IMAGE_WIDTH = 160
    BATCH_SIZE = 1
    TFRECORD_FILE = "./yzm/tfr/test.tfrecords"
    x = tf.placeholder(tf.float32, [None, 224, 224])
    def read_and_decode(filename):
        filename_queue = tf.train.string_input_producer([filename])
        reader = tf.TFRecordReader()
        _, serialized_example = reader.read(filename_queue)
        features = tf.parse_single_example(serialized_example, features={'image': tf.FixedLenFeature([], tf.string),
                                                                         'label0': tf.FixedLenFeature([], tf.int64),
                                                                         'label1': tf.FixedLenFeature([], tf.int64),
                                                                         'label2': tf.FixedLenFeature([], tf.int64),
                                                                         'label3': tf.FixedLenFeature([], tf.int64)
                                                                         })
        image = tf.decode_raw(features['image'], tf.uint8)
        # 没有经过预处理的灰度图
        image_raw = tf.reshape(image, [224, 224])
        image = tf.reshape(image, [224, 224])
        image = tf.cast(image, tf.float32) / 255.0  # 加速处理
        image = tf.subtract(image, 0.5)
        image = tf.multiply(image, 2.0)
        label0 = tf.cast(features['label0'], tf.int32)
        label1 = tf.cast(features['label1'], tf.int32)
        label2 = tf.cast(features['label2'], tf.int32)
        label3 = tf.cast(features['label3'], tf.int32)
        return image, image_raw, label0, label1, label2, label3
    image, image_raw, label0, label1, label2, label3 = read_and_decode(TFRECORD_FILE)
    image_batch, image_raw_batch, label_batch0, label_batch1, label_batch2, label_batch3 = tf.train.shuffle_batch(
        [image, image_raw, label0, label1, label2, label3],
        batch_size=BATCH_SIZE,
        capacity=53, min_after_dequeue=50,
        num_threads=1)
    train_network_fn = nets_factory.get_network_fn(
        'alexnet_v2',
        num_classes=CHAR_NUM,
        weight_decay=0.0005,
        is_training=False)
    with tf.Session() as sess:
        X = tf.reshape(x, [BATCH_SIZE, 224, 224, 1])
        logits0, logits1, logits2, logits3, end_pintos = train_network_fn(X)
        prediction0 = tf.reshape(logits0, [-1, CHAR_NUM])
        prediction0 = tf.argmax(prediction0, 1)
        prediction1 = tf.reshape(logits1, [-1, CHAR_NUM])
        prediction1 = tf.argmax(prediction1, 1)
        prediction2 = tf.reshape(logits2, [-1, CHAR_NUM])
        prediction2 = tf.argmax(prediction2, 1)
        prediction3 = tf.reshape(logits3, [-1, CHAR_NUM])
        prediction3 = tf.argmax(prediction3, 1)
        sess.run(tf.global_variables_initializer())
        saver = tf.train.Saver()
        saver.restore(sess, './ckpt/crack_captcha-10000.ckpt')
        coord = tf.train.Coordinator()
        threads = tf.train.start_queue_runners(sess=sess, coord=coord)
        for i in range(5):
            b_image, b_image_raw, b_label0, b_label1, b_label2, b_label3 = sess.run([image_batch,
                                                                                     image_raw_batch,                                                                                 label_batch0,                                                                                 label_batch1,                                                                                 label_batch2,                                                                                 label_batch3])
            img = Image.fromarray(b_image_raw[0], 'L')
            plt.imshow(img)
            plt.axis('off')
            plt.show()
            print('label:', b_label0, b_label1, b_label2, b_label3)
            label0, label1, label2, label3 = sess.run([prediction0, prediction1, prediction2, prediction3], feed_dict={x: b_image})
            print('predict:', label0, label1, label2, label3)
        coord.request_stop()
        coord.join(threads)

  • 相关阅读:
    Codeforces Round #579 (Div. 3)
    2019牛客暑期多校训练营(第一场)ABBA
    Comet OJ
    Codeforces Round #562 (Div. 2)
    Codeforces Round #569 (Div. 2)
    寒假集训总结
    线段树做题总结
    Git学习
    unity开发vuforia血的教训
    (学习13)最短圆排列问题
  • 原文地址:https://www.cnblogs.com/studya/p/11373733.html
Copyright © 2011-2022 走看看