zoukankan      html  css  js  c++  java
  • BZOJ_2693_jzptab_莫比乌斯反演

    BZOJ_2693_jzptab_莫比乌斯反演

    Description

    Input

    一个正整数T表示数据组数

    接下来T行 每行两个正整数 表示N、M

    Output

    T行 每行一个整数 表示第i组数据的结果

    Sample Input

    1

    4 5

    Sample Output

    122

    HINT
    T <= 10000

    N, M<=10000000


    $sumlimits_{i=1}^{n}sumlimits_{j=1}^{m}lcm(i,j)$

    $=sumlimits_{i=1}^{n}sumlimits_{j=1}^{m}frac{i*j}{gcd(i,j)}$

    $=sumlimits_{p=1}^{n}sumlimits_{i=1}^{lfloorfrac{n}{p} floor}
    sumlimits_{j=1}^{lfloorfrac{m}{p} floor} i*j*p*[gcd(i,j)=1]$

    $=sumlimits_{p=1}^{n}psumlimits_{i=1}^{lfloorfrac{n}{p} floor}
    sumlimits_{j=1}^{lfloorfrac{m}{p} floor} i*j
    sumlimits_{d|gcd(i,j)}mu(d)$


    $=sumlimits_{p=1}^{n}p
    sumlimits_{d=1}^{n/p}mu(d)*d^{2}
    sumlimits_{i=1}^{lfloorfrac{n/p}{d} floor}
    sumlimits_{j=1}^{lfloorfrac{m/p}{d} floor} i*j
    $

    设$s[n]=sumlimits_{i=1}^{n}i$

    $=sumlimits_{p=1}^{n}p
    sumlimits_{d=1}^{n/p}mu(d)*d^{2}*
    s[lfloorfrac{n/p}{d} floor]*
    s[lfloorfrac{m/p}{d} floor]
    $

    设$Q=d*p,先枚举Q$

    $=sumlimits_{Q=1}^{n}
    s[lfloorfrac{n}{Q} floor]*
    s[lfloorfrac{m}{Q} floor]
    sumlimits_{d|Q}mu(d)*d^{2}*lfloorfrac{Q}{d} floor
    $

    设$f[n]=sumlimits_{d|n}mu(d)*d^{2}*lfloorfrac{n}{d} floor
    =nsumlimits_{d|n}mu(d)*d$

    $=sumlimits_{Q=1}^{n}
    s[lfloorfrac{n}{Q} floor]*
    s[lfloorfrac{m}{Q} floor]*f[Q]
    $

    $然后发现f[n]=n*g[n],g[n]为 id卷mu 的积性函数$

    $我们可以处理出f[n]的前缀和,然后O(sqrt{n})处理即可$

    $mdlswl$

  • 相关阅读:
    Android_Studio常用插件
    Android_Studio 及SDK下载
    Ubuntu 16.04 LTS 正式发布:系统将持续更新5年
    Windows通用应用平台
    Jquery局部打印插件
    WEB打印插件Lodop
    WEB打印插件jatoolsPrinter
    hdu1863
    PromiseKit入门
    高速排序
  • 原文地址:https://www.cnblogs.com/suika/p/8892799.html
Copyright © 2011-2022 走看看