zoukankan      html  css  js  c++  java
  • POJ_2653_Pick-up sticks_判断线段相交

    POJ_2653_Pick-up sticks_判断线段相交

    Description

    Stan has n sticks of various length. He throws them one at a time on the floor in a random way. After finishing throwing, Stan tries to find the top sticks, that is these sticks such that there is no stick on top of them. Stan has noticed that the last thrown stick is always on top but he wants to know all the sticks that are on top. Stan sticks are very, very thin such that their thickness can be neglected.

    Input

    Input consists of a number of cases. The data for each case start with 1 <= n <= 100000, the number of sticks for this case. The following n lines contain four numbers each, these numbers are the planar coordinates of the endpoints of one stick. The sticks are listed in the order in which Stan has thrown them. You may assume that there are no more than 1000 top sticks. The input is ended by the case with n=0. This case should not be processed.

    Output

    For each input case, print one line of output listing the top sticks in the format given in the sample. The top sticks should be listed in order in which they were thrown.

    The picture to the right below illustrates the first case from input.

    Sample Input

    5
    1 1 4 2
    2 3 3 1
    1 -2.0 8 4
    1 4 8 2
    3 3 6 -2.0
    3
    0 0 1 1
    1 0 2 1
    2 0 3 1
    0
    

    Sample Output

    Top sticks: 2, 4, 5.
    Top sticks: 1, 2, 3.

    斯坦有各种长度的n条。他在地板上随意地扔了一个。在完成投掷后,斯坦试图找到最上面的棍子,那就是这些棍子,这样就没有棍子在上面了。
    斯坦注意到,最后一根投掷棒总是在上面,但他想知道上面所有的棍子。斯坦棒非常非常薄,以至于它们的厚度可以被忽略。

    暴力可过的一道题。直接枚举所有的所有的线段判断能不能被后面的覆盖即可。
    然后判断线段相交用四次叉积判断即可。

    代码:
    #include <stdio.h>
    #include <string.h>
    #include <algorithm>
    #include <queue>
    #include <math.h>
    using namespace std;
    typedef double f2;
    #define N 100050
    #define eps 1e-6
    bool vis[N];
    int ans[N],n;
    struct Point {
    	f2 x,y;
    	Point() {}
    	Point(f2 x_,f2 y_) :
    		x(x_),y(y_) {}
    	Point operator + (const Point &p) const {return Point(x+p.x,y+p.y);}
    	Point operator - (const Point &p) const {return Point(x-p.x,y-p.y);}
    	Point operator * (f2 rate) const {return Point(x*rate,y*rate);}
    };
    f2 dot(const Point &p1,const Point &p2) {return p1.x*p2.x+p1.y*p2.y;}
    f2 cross(const Point &p1,const Point &p2) {return p1.x*p2.y-p1.y*p2.x;}
    f2 FABS(f2 x) {return x>0?x:-x;}
    struct Line {
    	Point p,v;
    	Line() {}
    	Line(const Point &p_,const Point &v_) :
    		p(p_),v(v_) {}
    };
    Line a[N];
    f2 turn(const Point &p1,const Point &p2,const Point &p3) {
    	return cross(p3-p1,p2-p1);
    }
    bool judge(const Line &l1,const Line &l2) {
    	if(turn(l1.p,l1.v,l2.p)*turn(l1.p,l1.v,l2.v)>0) return 0;
    	if(turn(l2.p,l2.v,l1.p)*turn(l2.p,l2.v,l1.v)>0) return 0;
    	return 1;
    }
    void init() {
    	memset(vis,0,sizeof(vis)); ans[0]=0;
    }
    void solve() {
    	init();
    	int i,j;
    	f2 x,y,z,w;
    	int fir=0;
    	for(i=1;i<=n;i++) {
    		scanf("%lf%lf%lf%lf",&a[i].p.x,&a[i].p.y,&a[i].v.x,&a[i].v.y);
    	}
    	printf("Top sticks:");
    	for(i=1;i<=n;i++) {
    		int flg=0;
    		for(j=i+1;j<=n;j++) {
    			if(judge(a[i],a[j])) {
    				flg=1; break;
    			}
    		}
    		if(!flg) {
    			if(!fir) {
    				fir=1;
    			}else printf(",");
    			printf(" %d",i);
    		}
    	}
    	puts(".");
    }
    int main() {
    	while(scanf("%d",&n)&&n) {
    		solve();
    	}
    }
    
    
    
    
    
    
  • 相关阅读:
    06 | x86架构:有了开放的架构,才能打造开放的营商环境
    02 | 学习路径:爬过这六个陡坡,你就能对Linux了如指掌
    01 | 入学测验:你究竟对Linux操作系统了解多少?
    String、StringBuffer与StringBuilder区别
    JavaSE语言基础之字符串
    JavaSE语言基础之数组及其排序
    JavaSE语言基础之流程控制语句
    JavaSE语言基础之数据类型
    Java开发环境配置
    shell 脚本 自增
  • 原文地址:https://www.cnblogs.com/suika/p/9017764.html
Copyright © 2011-2022 走看看