Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 38364 | Accepted: 15439 |
Description
The French author Georges Perec (1936–1982) once wrote a book, La disparition, without the letter 'e'. He was a member of the Oulipo group. A quote from the book:
Tout avait Pair normal, mais tout s’affirmait faux. Tout avait Fair normal, d’abord, puis surgissait l’inhumain, l’affolant. Il aurait voulu savoir où s’articulait l’association qui l’unissait au roman : stir son tapis, assaillant à tout instant son imagination, l’intuition d’un tabou, la vision d’un mal obscur, d’un quoi vacant, d’un non-dit : la vision, l’avision d’un oubli commandant tout, où s’abolissait la raison : tout avait l’air normal mais…
Perec would probably have scored high (or rather, low) in the following contest. People are asked to write a perhaps even meaningful text on some subject with as few occurrences of a given “word” as possible. Our task is to provide the jury with a program that counts these occurrences, in order to obtain a ranking of the competitors. These competitors often write very long texts with nonsense meaning; a sequence of 500,000 consecutive 'T's is not unusual. And they never use spaces.
So we want to quickly find out how often a word, i.e., a given string, occurs in a text. More formally: given the alphabet {'A', 'B', 'C', …, 'Z'} and two finite strings over that alphabet, a word W and a text T, count the number of occurrences of W in T. All the consecutive characters of W must exactly match consecutive characters of T. Occurrences may overlap.
Input
The first line of the input file contains a single number: the number of test cases to follow. Each test case has the following format:
- One line with the word W, a string over {'A', 'B', 'C', …, 'Z'}, with 1 ≤ |W| ≤ 10,000 (here |W| denotes the length of the string W).
- One line with the text T, a string over {'A', 'B', 'C', …, 'Z'}, with |W| ≤ |T| ≤ 1,000,000.
Output
For every test case in the input file, the output should contain a single number, on a single line: the number of occurrences of the word W in the text T.
Sample Input
3
BAPC
BAPC
AZA
AZAZAZA
VERDI
AVERDXIVYERDIAN
Sample Output
1
3
0
Source
1 #include<cstdio> 2 #include<cstring> 3 using namespace std; 4 #define P 29 5 const int N=1e6+10; 6 char s1[N],s2[N]; 7 int p,ans,S,n1,n2,ha[N]; 8 void get_P(){ 9 p=1; 10 for(int i=1;i<=n2;i++)p*=P; 11 } 12 void get_Hash(){ 13 ha[0]=0;S=0; 14 for(int i=1;i<=n2;i++) S=S*P+s2[i]-'a'; 15 for(int i=1;i<=n1;i++) ha[i]=ha[i-1]*P+s1[i]-'a'; 16 } 17 int query(int l,int r){ 18 return ha[r]-ha[l-1]*p; 19 } 20 int main(){ 21 int T;scanf("%d",&T); 22 while(T--){ 23 ans=0; 24 scanf("%s%s",s2+1,s1+1); 25 n1=strlen(s1+1);n2=strlen(s2+1); 26 get_P();get_Hash(); 27 for(int i=n2,x;i<=n1;i++){ 28 x=query(i-n2+1,i); 29 if(x==S) ans++; 30 } 31 printf("%d ",ans); 32 } 33 return 0; 34 }
KMP版本:
1 #include<cstdio> 2 #include<cstring> 3 using namespace std; 4 const int N=1e6+10; 5 char s[N],t[N]; 6 int T,n,m,next[N],ans; 7 void Get_Next(){ 8 int j=0; 9 for(int i=2;i<=m;i++){ 10 while(j && t[i] != t[j+1])j=next[j]; 11 if(t[i] == t[j+1])j++; 12 next[i]=j; 13 } 14 } 15 void KMP(){ 16 int j=0; 17 for(int i=1;i<=n;i++){ 18 while(j && s[i] != t[j+1])j=next[j]; 19 if(s[i]==t[j+1])j++; 20 if(j==m)ans++,j=next[j]; 21 } 22 } 23 int main() 24 { 25 scanf("%d",&T); 26 while(T--){ 27 scanf("%s%s",t+1,s+1); 28 ans=0; 29 n=strlen(s+1),m=strlen(t+1); 30 Get_Next(); 31 KMP(); 32 printf("%d ",ans); 33 } 34 return 0; 35 }