zoukankan      html  css  js  c++  java
  • [网络流24题] COGS 750 栅格网络流

    750. 栅格网络流

    ★★☆   输入文件:flowa.in   输出文件:flowa.out   简单对比
    时间限制:1 s   内存限制:128 MB

    【问题描述】

    Bob 觉得一般图的最大流问题太难了,他不知道如何解决,于是他想尝试一个简单点的:栅格网络中的最大流问题,这个虽说简单了一点,但对 Bob 来说依旧太难,现在他有个麻烦需要你帮忙:给你一个 N*M 的栅格(如下所示),栅格中的边表示可以流水的管道,边上的数字表示管道的容量,举例说明:在下面图( 2.6.1 )中, (0,0) 和 (1,0) 之间边的容量为 6 ,这意味着这条边(水管)的最大水流量不超过 6 个单位。

    N=3 M=3
    图 2.6.1 栅格网络流

    那么栅格中从 S 到 T 的最大流是多少呢 ? 换句话说 , 某一时刻最多能有多少单位的水从 S 流向 T?

    【输入格式】

    输入文件的第一行是一个正整数 T ,表示接下来有多少组测试数据。

    每一组测试数据的第一行有两个正整数 N,M(1<=N,M<=100)<n<100) 和="" m(1<m<100)="" 。接下来有两个整数矩阵="" h="" (="" n*(m-1)="" )和="" v="" (n-1)*m="" ),="" h[i][j]="" 表示="" (i,j)="" 与="" (i,j+1)="" 之间边的容量,="" v[i][j]="" (i+1,j)="" 中所有的数均非负且小于="" 10^10="" 。<="" p="">

    接着有两个矩阵H(N*(M-1)),V((N-1)*M),H[i][j]表示(i,j)->(i,j+1)的流量;

    V[i][j]表示(i,j)->(i+1,j)的流量。

    【输出格式】

    每一组测试数据输出只有一行,包含一个整数,即从 S(0,0) 到 T(N-1,M-1) 的栅格网络的最大流,不允许出现多余的空格。

    【输入样例】

    输入文件名: flowa .in

    1
    3 3
    0 1
    2 3
    4 5
    6 7 8
    9 10 11

    输出文件名: flowa .out

    6

    提示:下图 (2.6.2) 所示即为样例中栅格中的一个最大流。

    N=3 M=3
    图 2.6.2 一个解决方案

     1 /*
     2 网格图的最小割问题
     3 很明显如果写最大流一定会超时,所以可以利用最大流最小割定理解决。
     4 我们可以在某条边i的两侧加两个点,连一条边j,使两条边切割,这样建图的话,最小割就等于新图的最短路,
     5 只要多加起点和终点就可以跑最短路了。
     6 dijkstral+堆优化 
     7 用最短路来处理 最小割 好像只适用于 网格最小割 
     8 */
     9 #include<iostream>
    10 #include<cstring>
    11 #include<cstdlib>
    12 #include<queue>
    13 #include<cstdio>
    14 using namespace std;
    15 #define N 20010
    16 #define INF 100000000000000LL
    17 #define LL long long 
    18 int head[N],n,m,tot,ans,S,T;  LL dis[N];
    19 struct Edge{
    20     int v,w,next;
    21 }e[N*4];
    22 int Make_hao(int i,int j){return (i-1)*(m+1)+j;}
    23 void Add_Edge(int u,int v,int w){
    24     e[++tot].v=v;e[tot].w=w;
    25     e[tot].next=head[u];head[u]=tot;
    26 }
    27 void Dijkstra(){
    28     priority_queue<int>q;
    29     for(int i=S;i<=T;i++)dis[i]=-INF;
    30     dis[S]=0;q.push(S);
    31     while(!q.empty()){
    32         int u=q.top();q.pop();
    33         for(int i=head[u];i;i=e[i].next){
    34             int v=e[i].v;
    35             if(dis[v]<dis[u]+(LL)e[i].w){
    36                 dis[v]=dis[u]+(LL)e[i].w;
    37                 q.push(v);
    38             }
    39         }
    40     }
    41     cout<<-dis[T]<<endl;
    42 }
    43 void Solve(){
    44     scanf("%d%d",&n,&m);
    45     S=0;T=(n+1)*(m+1)+1;
    46     for(int i=1;i<=n;i++)
    47         for(int j=2,x;j<=m;j++){
    48             scanf("%d",&x);
    49             Add_Edge(Make_hao(i,j),Make_hao(i+1,j),-x);
    50             Add_Edge(Make_hao(i+1,j),Make_hao(i,j),-x);
    51         }
    52     for(int i=2;i<=n;i++)
    53         for(int j=1,x;j<=m;j++){
    54             scanf("%d",&x);
    55             Add_Edge(Make_hao(i,j),Make_hao(i,j+1),-x);
    56             Add_Edge(Make_hao(i,j+1),Make_hao(i,j),-x);
    57         }
    58     for(int i=2;i<=m;i++)Add_Edge(S,i,0);
    59     for(int i=2*m+2;i<=T-2;i+=(m+1))Add_Edge(S,i,0);
    60     for(int i=m+2;i<=T-2;i+=(m+1))Add_Edge(i,T,0);
    61     for(int i=n*(m+1)+2;i<=T-2;i++)Add_Edge(i,T,0);
    62     Dijkstra();
    63 }
    64 int main(){
    65     freopen("flowa.in","r",stdin);
    66     freopen("flowa.out","w",stdout);
    67     int T;scanf("%d",&T);
    68     while(T--){
    69         memset(head,0,sizeof(head));
    70         tot=0;Solve();
    71     }
    72     return 0;
    73 }
  • 相关阅读:
    hive表链接
    hive聚合函数和表生成函数
    hive条件函数
    hive日期函数
    hive之size函数和cast转换函数
    hive数学函数
    hive排序
    5G基站概述
    MEC边缘云平台
    ELK日志系统的架构
  • 原文地址:https://www.cnblogs.com/suishiguang/p/6519692.html
Copyright © 2011-2022 走看看