zoukankan      html  css  js  c++  java
  • 数据结构与算法-列表

    数据结构与算法-列表

    列表的linkedlist

    LinkedList 是通过一个双向链表来实现的,它允许插入所有元素,包括 null,同时,它是线程不同步的。双向链表每个结点除了数据域之外,还有一个前指针和后指针,分别指向前驱结点和后继结点(如果有前驱/后继的话)。另外,双向链表还有一个 first 指针,指向头节点,和 last 指针,指向尾节点。

    循位置访问

    列表:采用动态存储的典型结构。

    • 每个元素称为节点( node )。

    • 各个节点通过指针或引用彼此联接,在逻辑上构成一个线性序列。相邻节点彼此互称前驱和后继。如果存在前驱和后继,那么必然是唯一的。

    • 没有前驱的节点称为首,没有后继的节点称为末。此外,可以认为头存在一个哨兵前驱称为头,末存在一个哨兵后继称为尾。

    • 可以认为 头、首、末、尾 节点的秩分别为 -1、0、n-1、n。

    • 在访问时尽量不使用循秩访问,而使用循位置访问。即利用节点之间的相互引用,找到特定的节点。

    列表中元素(源码解析

    public class LinkedList<E>
        extends AbstractSequentialList<E>
        implements List<E>, Deque<E>, Cloneable, java.io.Serializable
    {
        /**
         *链表的节点个数
         */
        transient int size = 0;
    
        /**
         * 指向头节点的指针
         */
        transient Node<E> first;
    
        /**
         * 指向尾节点的指针
         */
        transient Node<E> last;
    

    列表构造器

    /**
         * 空构造器.
         */
        public LinkedList() {
        }
    
        /**
         * 包含集合中元素的构造器
         */
        public LinkedList(Collection<? extends E> c) {
            this();
            addAll(c);
        }
    
    
    public boolean addAll(Collection<? extends E> c) {
            return addAll(size, c);
        }
    
        public boolean addAll(int index, Collection<? extends E> c) {
            checkPositionIndex(index);
    
            Object[] a = c.toArray();
            int numNew = a.length;
            if (numNew == 0)
                return false;
    
            Node<E> pred, succ;
            if (index == size) {
                succ = null;
                pred = last;
            } else {
                succ = node(index);
                pred = succ.prev;
            }
    
            for (Object o : a) {
                @SuppressWarnings("unchecked") E e = (E) o;
                Node<E> newNode = new Node<>(pred, e, null);
                if (pred == null)
                    first = newNode;
                else
                    pred.next = newNode;
                pred = newNode;
            }
    
            if (succ == null) {
                last = pred;
            } else {
                pred.next = succ;
                succ.prev = pred;
            }
    
            size += numNew;
            modCount++;//操作次数
            return true;
        }
    

    元素的添加

    private static class Node<E> {
            E item;
            Node<E> next;
            Node<E> prev;
    
            Node(Node<E> prev, E element, Node<E> next) {
                this.item = element;
                this.next = next;
                this.prev = prev;
            }
        }
    
    /**
         * 添加为第一个元素.
         */
        private void linkFirst(E e) {
            final Node<E> f = first;
            final Node<E> newNode = new Node<>(null, e, f);
            first = newNode;
            if (f == null)//如果第一个为空,则原List为空
                last = newNode;//list的first和last都设置为加入元素
            else
                f.prev = newNode;
            size++;
            modCount++;
        }
    

    /**
         * 添加为尾元素.
         */
        void linkLast(E e) {
            final Node<E> l = last;
            final Node<E> newNode = new Node<>(l, e, null);
            last = newNode;
            if (l == null)//同上
                first = newNode;
            else
                l.next = newNode;
            size++;
            modCount++;
        }
    

    /**
         * 添加到指定Node之前.
         */
        void linkBefore(E e, Node<E> succ) {
            // assert succ != null;
            final Node<E> pred = succ.prev;
            final Node<E> newNode = new Node<>(pred, e, succ);
            succ.prev = newNode;
            if (pred == null)
                first = newNode;
            else
                pred.next = newNode;
            size++;
            modCount++;
        }
    

    元素的删除

     /**
         * 去除链接有三种
    	 * 第一种:first链接
         */
        private E unlinkFirst(Node<E> f) {
            // assert f == first && f != null;
            final E element = f.item;
            final Node<E> next = f.next;
            f.item = null;
            f.next = null; // help GC
            first = next;
            if (next == null)
                last = null;
            else
                next.prev = null;
            size--;
            modCount++;
            return element;
        }
    
        /**
         * 第二种:last链接
         */
        private E unlinkLast(Node<E> l) {
            // assert l == last && l != null;
            final E element = l.item;
            final Node<E> prev = l.prev;
            l.item = null;
            l.prev = null; // help GC
            last = prev;
            if (prev == null)
                first = null;
            else
                prev.next = null;
            size--;
            modCount++;
            return element;
        }
    
        /**
         * 第三种:中间链接.
         */
        E unlink(Node<E> x) {
            // assert x != null;
            final E element = x.item;
            final Node<E> next = x.next;
            final Node<E> prev = x.prev;
    
            if (prev == null) {
                first = next;
            } else {
                prev.next = next;
                x.prev = null;
            }
    
            if (next == null) {
                last = prev;
            } else {
                next.prev = prev;
                x.next = null;
            }
    
            x.item = null;
            size--;
            modCount++;
            return element;
        }
    

    常用的方法

    /**一些常用的方法
         * Returns the first element in this list.
         */
        public E getFirst() {
            final Node<E> f = first;
            if (f == null)
                throw new NoSuchElementException();
            return f.item;
        }
    
        /**
         * Returns the last element in this list.
         */
        public E getLast() {
            final Node<E> l = last;
            if (l == null)
                throw new NoSuchElementException();
            return l.item;
        }
    
        /**
         * Removes and returns the first element from this list.
         */
        public E removeFirst() {
            final Node<E> f = first;
            if (f == null)
                throw new NoSuchElementException();
            return unlinkFirst(f);
        }
    
        /**
         * Removes and returns the last element from this list.
         */
        public E removeLast() {
            final Node<E> l = last;
            if (l == null)
                throw new NoSuchElementException();
            return unlinkLast(l);
        }
    
        /**
         * Inserts the specified element at the beginning of this list.
         */
        public void addFirst(E e) {
            linkFirst(e);
        }
    
        /**
         * Appends the specified element to the end of this list.
         */
        public void addLast(E e) {
            linkLast(e);
        }
    
        /**
    	 * 判断是否包含某一元素
         */
        public boolean contains(Object o) {
            return indexOf(o) != -1;
        }
    
        /**
         * Returns the number of elements in this list.
         */
        public int size() {
            return size;
        }
    
        /**
         * Appends the specified element to the end of this list.
         */
        public boolean add(E e) {
            linkLast(e);
            return true;
        }
    
        /**
         * Removes the first occurrence of the specified element from this list,
         * if it is present.  If this list does not contain the element, it is
         * unchanged.  More formally, removes the element with the lowest index
         * {@code i} such that
         */
        public boolean remove(Object o) {
            if (o == null) {
                for (Node<E> x = first; x != null; x = x.next) {
                    if (x.item == null) {
                        unlink(x);
                        return true;
                    }
                }
            } else {
                for (Node<E> x = first; x != null; x = x.next) {
                    if (o.equals(x.item)) {
                        unlink(x);
                        return true;
                    }
                }
            }
            return false;
        }
    
        /**
         * Removes all of the elements from this list.
         * The list will be empty after this call returns.
         */
        public void clear() {
            for (Node<E> x = first; x != null; ) {
                Node<E> next = x.next;
                x.item = null;
                x.next = null;
                x.prev = null;
                x = next;
            }
            first = last = null;
            size = 0;
            modCount++;
        }
    
    
        // Positional Access Operations
    
        /**
         * Returns the element at the specified position in this list.
         */
        public E get(int index) {
            checkElementIndex(index);
            return node(index).item;
        }
    
        /**
         * Replaces the element at the specified position in this list with the
         * specified element.
         */
        public E set(int index, E element) {
            checkElementIndex(index);
            Node<E> x = node(index);
            E oldVal = x.item;
            x.item = element;
            return oldVal;
        }
    
        /**
         * Inserts the specified element at the specified position in this list.
         * Shifts the element currently at that position (if any) and any
         * subsequent elements to the right (adds one to their indices).
         */
        public void add(int index, E element) {
            checkPositionIndex(index);
    
            if (index == size)
                linkLast(element);
            else
                linkBefore(element, node(index));
        }
    
        /**
         * Removes the element at the specified position in this list.  Shifts any
         * subsequent elements to the left (subtracts one from their indices).
         * Returns the element that was removed from the list.
         */
        public E remove(int index) {
            checkElementIndex(index);
            return unlink(node(index));
        }
    
        /**
         * Tells if the argument is the index of an existing element.
         */
        private boolean isElementIndex(int index) {
            return index >= 0 && index < size;
        }
    
        /**
         * Tells if the argument is the index of a valid position for an
         * iterator or an add operation.
         */
        private boolean isPositionIndex(int index) {
            return index >= 0 && index <= size;
        }
    
        /**
         * Constructs an IndexOutOfBoundsException detail message.
         * Of the many possible refactorings of the error handling code,
         * this "outlining" performs best with both server and client VMs.
         */
        private String outOfBoundsMsg(int index) {
            return "Index: "+index+", Size: "+size;
        }
    
        private void checkElementIndex(int index) {
            if (!isElementIndex(index))
                throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
        }
    
        private void checkPositionIndex(int index) {
            if (!isPositionIndex(index))
                throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
        }
    
        /**
         * Returns the (non-null) Node at the specified element index.
         */
        Node<E> node(int index) {
            // assert isElementIndex(index);
    
            if (index < (size >> 1)) {
                Node<E> x = first;
                for (int i = 0; i < index; i++)
                    x = x.next;
                return x;
            } else {
                Node<E> x = last;
                for (int i = size - 1; i > index; i--)
                    x = x.prev;
                return x;
            }
        }
    
        // Search Operations
    
        /**
         * Returns the index of the first occurrence of the specified element
         * in this list, or -1 if this list does not contain the element.
         * More formally, returns the lowest index {@code i} such that
         * <tt>(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i)))</tt>,
         * or -1 if there is no such index.
         */
        public int indexOf(Object o) {
            int index = 0;
            if (o == null) {
                for (Node<E> x = first; x != null; x = x.next) {
                    if (x.item == null)
                        return index;
                    index++;
                }
            } else {
                for (Node<E> x = first; x != null; x = x.next) {
                    if (o.equals(x.item))
                        return index;
                    index++;
                }
            }
            return -1;
        }
    
        /**
         * Returns the index of the last occurrence of the specified element
         * in this list, or -1 if this list does not contain the element.
         * More formally, returns the highest index {@code i} such that
         * <tt>(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i)))</tt>,
         * or -1 if there is no such index.
         */
        public int lastIndexOf(Object o) {
            int index = size;
            if (o == null) {
                for (Node<E> x = last; x != null; x = x.prev) {
                    index--;
                    if (x.item == null)
                        return index;
                }
            } else {
                for (Node<E> x = last; x != null; x = x.prev) {
                    index--;
                    if (o.equals(x.item))
                        return index;
                }
            }
            return -1;
        }
    

    迭代器

    /**
         * 迭代器有两种:
    	 * ListIterator
         */
        public ListIterator<E> listIterator(int index) {
            checkPositionIndex(index);
            return new ListItr(index);
        }
    
        private class ListItr implements ListIterator<E> {
            private Node<E> lastReturned;
            private Node<E> next;
            private int nextIndex;
            private int expectedModCount = modCount;
    
            ListItr(int index) {
                // assert isPositionIndex(index);
                next = (index == size) ? null : node(index);
                nextIndex = index;
            }
    
            public boolean hasNext() {
                return nextIndex < size;
            }
    
            public E next() {
                checkForComodification();
                if (!hasNext())
                    throw new NoSuchElementException();
    
                lastReturned = next;
                next = next.next;
                nextIndex++;
                return lastReturned.item;
            }
    
            public boolean hasPrevious() {
                return nextIndex > 0;
            }
    
            public E previous() {
                checkForComodification();
                if (!hasPrevious())
                    throw new NoSuchElementException();
    
                lastReturned = next = (next == null) ? last : next.prev;
                nextIndex--;
                return lastReturned.item;
            }
    
            public int nextIndex() {
                return nextIndex;
            }
    
            public int previousIndex() {
                return nextIndex - 1;
            }
    
            public void remove() {
                checkForComodification();
                if (lastReturned == null)
                    throw new IllegalStateException();
    
                Node<E> lastNext = lastReturned.next;
                unlink(lastReturned);
                if (next == lastReturned)
                    next = lastNext;
                else
                    nextIndex--;
                lastReturned = null;
                expectedModCount++;
            }
    
            public void set(E e) {
                if (lastReturned == null)
                    throw new IllegalStateException();
                checkForComodification();
                lastReturned.item = e;
            }
    
            public void add(E e) {
                checkForComodification();
                lastReturned = null;
                if (next == null)
                    linkLast(e);
                else
                    linkBefore(e, next);
                nextIndex++;
                expectedModCount++;
            }
    
            public void forEachRemaining(Consumer<? super E> action) {
                Objects.requireNonNull(action);
                while (modCount == expectedModCount && nextIndex < size) {
                    action.accept(next.item);
                    lastReturned = next;
                    next = next.next;
                    nextIndex++;
                }
                checkForComodification();
            }
    
            final void checkForComodification() {
                if (modCount != expectedModCount)
                    throw new ConcurrentModificationException();
            }
        }
    
    /**
         * 第二种:descendingIterator对ListItr的应用
         */
        public Iterator<E> descendingIterator() {
            return new DescendingIterator();
        }
    
        /**
         * Adapter to provide descending iterators via ListItr.previous
         */
        private class DescendingIterator implements Iterator<E> {
            private final ListItr itr = new ListItr(size());
            public boolean hasNext() {
                return itr.hasPrevious();
            }
            public E next() {
                return itr.previous();
            }
            public void remove() {
                itr.remove();
            }
        }
    

    唯一化

    无序列表


    有序列表

    选择排序

    原理

    c++方法

    性能比较

    JAVA方法(不是关于LinkedList的)

    public class ChooseSort {
    
    	static int[] array = {3,2,4,1,5,0};
    	
    	public static void chooseSort(int[] a) 
    	{
    		int max = 0;
    		int index = 0;
    		//外层循环,控制选择的次数,数组长度为6,一共需要选择5次
    		for(int i=0;i<a.length-1;i++) 
    		{
    			for(int j=0;j<a.length-i;j++) 
    			{
    				if(max < a[j]) 
    				{
    					max = a[j];
    					index = j;
    				}
    			}
    			//每次选择完成后,max中存放的是该轮选出的最大值
    			//将max指向位置的元素和数组最后一个元素位置互换
    			int temp = a[a.length-i-1];
    			a[a.length-i-1] = max;
    			a[index] = temp;
    			//清空max和index,便于下次
    			max=0;
    			index =0;
    			System.out.println("经过第"+(i+1)+"轮选择后,数组为"+Arrays.toString(a));
    		}
    	}
    	
    	public static void main(String[] args) {
    		chooseSort(array);
    	}
    }
    
    

    插入排序

    原理

    c++方法

    template <typename T> //列表的插入排序算法:对起始于位置p的n个元素排序
    void List<T>::insertionSort ( ListNodePosi(T) p, int n ) { //valid(p) && rank(p) + n <= size
    	for ( int r = 0; r < n; r++ ) { //逐一为各节点
    		insertA ( search ( p->data, r, p ), p->data ); //查找适当的位置并插入
    		p = p->succ; 
    		remove ( p->pred ); //转向下一节点
        }
     }
    
    template <typename T> //在有序列表内节点p(可能是trailer)的n个(真)前驱中,找到不大于e的最后者
    ListNodePosi(T) List<T>::search ( T const& e, int n, ListNodePosi(T) p ) const {
    	// assert: 0 <= n <= rank(p) < _size
        do {
           p = p->pred; n--;  //从右向左
        } while ( ( -1 < n ) && ( e < p->data ) ); //逐个比较,直至命中或越界
        return p; //返回查找终止的位置
    } //失败时,返回区间左边界的前驱(可能是header)——调用者可通过valid()判断成功与否
    
    

    逆序对

    JAVA方法

    public  class LinkedInsertSort {
        static class ListNode {
            int val;
            ListNode next;
            ListNode(int x) {
                val = x;
                next = null;
            }
        }
     
        public static ListNode insertionSortList(ListNode head) {
            if(head==null||head.next==null)    return head;
     
            ListNode pre = head;//pre指向已经有序的节点
            ListNode cur = head.next;//cur指向待排序的节点
     
            ListNode aux = new ListNode(-1);//辅助节点
            aux.next = head;
     
            while(cur!=null){
                if(cur.val<pre.val){
                  //先把cur节点从当前链表中删除,然后再把cur节点插入到合适位置
                    pre.next = cur.next;
     
                    //从前往后找到l2.val>cur.val,然后把cur节点插入到l1和l2之间
                    ListNode l1 = aux;
                    ListNode l2 = aux.next;
                    while(cur.val>l2.val){
                        l1 = l2;
                        l2 = l2.next;
                    }
                    //把cur节点插入到l1和l2之间
                    l1.next = cur;
                    cur.next = l2;//插入合适位置
     
                    cur = pre.next;//指向下一个待处理节点
     
                }else{
                    pre = cur;
                    cur = cur.next;
                }
            }
            return aux.next;
        }
    }
    

    java实现

    https://www.cnblogs.com/iwehdio/p/12621460.html

  • 相关阅读:
    1111---9999的变换
    Mac命令行
    iOS 支付 [支付宝、银联、微信]
    ShareSDK适配iOS 9系统
    iOS中Size Classes的理解与使用
    iOS9网络请求升级 之前的不显示图片 破解方法
    iOS9中友盟分享不能使用 破解方法
    iOS9中错误信息信息是引入的一个第三方库不包含bitcode
    iOS 六大手势
    下拉刷新和上拉加载的原理
  • 原文地址:https://www.cnblogs.com/suit000001/p/13393000.html
Copyright © 2011-2022 走看看