zoukankan      html  css  js  c++  java
  • sparkSQL中的example学习(1)

    SparkSQLDemo.scala

    
    import org.apache.spark.sql.{Row, SparkSession}
    import org.apache.spark.sql.types.{StringType, StructField, StructType}
    
    object SparkSQLDemo {
    
      // $example on:create_ds$
      case class Person(name: String, age: Long)
      // $example on:create_ds$
    
      def main(args: Array[String]): Unit = {
        //开启SparkSession
        //    $example on: init_session$
        val spark = SparkSession
          .builder()
          .appName("SparkSQLDemo")
          .master("local")
          .config("spark.some.config.option", "some-value")
          .getOrCreate()
    //    $example off: init_session$
    
    
    //    runBasicDataFrameDemo(spark)
    //    runDatasetCreationDemo(spark)
    //    runInferSchemaDemo(spark)
        runProgrammaticSchemaDemo(spark)
    
        //关闭SparkSeesion
        spark.stop()
    
      }
    
      private def runBasicDataFrameDemo(spark: SparkSession) = {
    
        val df = spark.read.json("/Users/hadoop/app/spark/examples/src/main/resources/people.json")
    
        //Displays the content of the DataFrame to stdout
        df.show()
    
        //Print the schema in a tree format
        df.printSchema()
    
        //Select only the "name" column
        df.select("name").show()
    
        //This import is needed to use the $-notation
        import spark.implicits._
        df.select($"name", $"age" + 1).show()
    
        //Select people older than 21
        df.select($"age" > 21).show()
    
        //Count people by age
        df.groupBy("age").count().show()
    
    
        //$example on: global_temp_view$
        //Register the DataFrame as a SQL temporary view
        df.createOrReplaceTempView("people")
        val sqlDF = spark.sql("select * from people")
        sqlDF.show()
    
        //Register the DataFrame as a global temporary view
        df.createGlobalTempView("people")
    
        //Global temporary view is tied to a system preserved database `global_temp`
        spark.sql("select * from global_temp.people").show
    
        //Global temporary view is cross-session
        spark.newSession().sql("select * from global_temp.people").show()
    
      }
    
    
      private def runDatasetCreationDemo(spark: SparkSession) = {
    
    //    A container for a [[Dataset]], used for implicit conversions in Scala.
    //    To use this, import implicit conversions in SQL:
        import spark.implicits._
    
        // .toDS() -> 这是用括号声明的,以防止Scala编译器将`rdd.toDS(“1”)`视为调用此toDS然后应用于返回的数据集。
    
        //Encoder are created for case classes (为case class 创建编码器)
        val caseClassDS = Seq(Person("Andy", 32)).toDS()
        caseClassDS.show()
    
        //Encoders for most common types are automatically provided by importing spark.implicits._
        val primitiveDS = Seq(1, 2, 3).toDS()
        primitiveDS.map(_ + 1).foreach(println(_))//.collect()
    
        //DataFrames can be converted to a Dataset by providing a class. Mapping will bedone by name
        val path = "/Users/hadoop/app/spark/examples/src/main/resources/people.json"
        val peopleDS = spark.read.json(path).as[Person]
        peopleDS.show()
    
    
      }
    
    
    
      private def runInferSchemaDemo(spark: SparkSession) = {
    
    //    $example on: schema_inferring$
        //For implicit conversions from RDDs to DataFrames
        import spark.implicits._
    
        //Create an RDD of Person objects from a text file, convert it to a DataFrame
        val peopleDF = spark.sparkContext
          .textFile("/Users/hadoop/app/spark/examples/src/main/resources/people.txt")
          .map(_.split(","))
          .map(x => Person(x(0), x(1).trim.toInt))
          .toDF()
    
        //Register the DataFrame as a temporary view
        peopleDF.createOrReplaceTempView("people")
    
        //SQL statements can be run by using the sql methods provided by Spark
        val teenagersDF = spark.sql("select name, age from people where age between 13 and 19")
    
        //The columns of a row in the result can be accessed by field index
        //(结果中的行的列可以通过字段索引访问)
        teenagersDF.map(teenager => s"Name: ${teenager(0)}").show()
    
    
        //or by field name
        teenagersDF.map(teenager => s"Name: ${teenager.getAs[String]("name")}").show()
    
    
    
        //No pre-defined encoders for Dataset[Map[K,V]], define explicitly
        //(Dataset[Map[K,V]] 没有预定义的编码器, 显式定义)
        implicit val mapEncoder = org.apache.spark.sql.Encoders.kryo[Map[String, Any]]
    
        //Primitive types and case classes can be also defined as
        //(原始类型和case类也可以定义为隐式val )
        //implicit val stringIntMapEncoder: Encoder[Map[String, Any]] = ExpressionEncoder()
    
        //row.getValuesMap[T] retrieves multiple columns at once into a Map[String, T]
        teenagersDF.map(teenager =>
          teenager.getValuesMap[Any](List("name", "age"))
        ).foreach(println(_))//.collect()
    
    
    //    $example off: schema_inferring$
    
      }
    
    
      private def runProgrammaticSchemaDemo(spark: SparkSession) = {
    
        import spark.implicits._
    //    $example on: programmatic_schema$
    
        //Create an RDD
        val peopleRDD = spark.sparkContext.textFile("/Users/hadoop/app/spark/examples/src/main/resources/people.txt")
    
        //The schema is encoded in a string
        val schemaString = "name age"
    
        //Generate the schema based on the string of schema
        val fields = schemaString.split(" ")
          .map(fieldName => StructField(fieldName, StringType, nullable = true))
        val schema = StructType(fields)
    
        //Convert records of the RDD (people) to Rows
        val rowRDD = peopleRDD
          .map(_.split(","))
          .map(attributes => Row(attributes(0), attributes(1).trim))
    
        //Apply the schema to the RDD
        val peopleDF = spark.createDataFrame(rowRDD, schema)
    
        //Creates a temporary view using the DataFrame
        peopleDF.createOrReplaceTempView("people")
    
        //SQL can be run over a temporary view created using DataFrames
        val results = spark.sql("select name from people")
    
        //The results of SQL queries are DataFrames and support all the normal RDD operations
        //The columns of a row in the result can be accessed by field index or by field name
        results.map(attributes => s"Name: ${attributes(0)}").show()
    
    
    //    $exmaple off: programmatic_schema$
      }
    }
    

    屏幕快照 2019-05-14 03.55.35屏幕快照 2019-05-14 03.55.46

  • 相关阅读:
    一. js高级(1)-面向对象编程
    tips01- 定位
    h5c3 part6 flex
    h5c3 part5 background and transform
    template and pagination
    h5c3 part4
    h5c3 part3
    h5c3 part2
    h5c3 part1
    学习博客
  • 原文地址:https://www.cnblogs.com/suixingc/p/sparksql-zhong-deexample-xue-xi-1.html
Copyright © 2011-2022 走看看