SparkSQLDemo.scala
import org.apache.spark.sql.{Row, SparkSession}
import org.apache.spark.sql.types.{StringType, StructField, StructType}
object SparkSQLDemo {
// $example on:create_ds$
case class Person(name: String, age: Long)
// $example on:create_ds$
def main(args: Array[String]): Unit = {
//开启SparkSession
// $example on: init_session$
val spark = SparkSession
.builder()
.appName("SparkSQLDemo")
.master("local")
.config("spark.some.config.option", "some-value")
.getOrCreate()
// $example off: init_session$
// runBasicDataFrameDemo(spark)
// runDatasetCreationDemo(spark)
// runInferSchemaDemo(spark)
runProgrammaticSchemaDemo(spark)
//关闭SparkSeesion
spark.stop()
}
private def runBasicDataFrameDemo(spark: SparkSession) = {
val df = spark.read.json("/Users/hadoop/app/spark/examples/src/main/resources/people.json")
//Displays the content of the DataFrame to stdout
df.show()
//Print the schema in a tree format
df.printSchema()
//Select only the "name" column
df.select("name").show()
//This import is needed to use the $-notation
import spark.implicits._
df.select($"name", $"age" + 1).show()
//Select people older than 21
df.select($"age" > 21).show()
//Count people by age
df.groupBy("age").count().show()
//$example on: global_temp_view$
//Register the DataFrame as a SQL temporary view
df.createOrReplaceTempView("people")
val sqlDF = spark.sql("select * from people")
sqlDF.show()
//Register the DataFrame as a global temporary view
df.createGlobalTempView("people")
//Global temporary view is tied to a system preserved database `global_temp`
spark.sql("select * from global_temp.people").show
//Global temporary view is cross-session
spark.newSession().sql("select * from global_temp.people").show()
}
private def runDatasetCreationDemo(spark: SparkSession) = {
// A container for a [[Dataset]], used for implicit conversions in Scala.
// To use this, import implicit conversions in SQL:
import spark.implicits._
// .toDS() -> 这是用括号声明的,以防止Scala编译器将`rdd.toDS(“1”)`视为调用此toDS然后应用于返回的数据集。
//Encoder are created for case classes (为case class 创建编码器)
val caseClassDS = Seq(Person("Andy", 32)).toDS()
caseClassDS.show()
//Encoders for most common types are automatically provided by importing spark.implicits._
val primitiveDS = Seq(1, 2, 3).toDS()
primitiveDS.map(_ + 1).foreach(println(_))//.collect()
//DataFrames can be converted to a Dataset by providing a class. Mapping will bedone by name
val path = "/Users/hadoop/app/spark/examples/src/main/resources/people.json"
val peopleDS = spark.read.json(path).as[Person]
peopleDS.show()
}
private def runInferSchemaDemo(spark: SparkSession) = {
// $example on: schema_inferring$
//For implicit conversions from RDDs to DataFrames
import spark.implicits._
//Create an RDD of Person objects from a text file, convert it to a DataFrame
val peopleDF = spark.sparkContext
.textFile("/Users/hadoop/app/spark/examples/src/main/resources/people.txt")
.map(_.split(","))
.map(x => Person(x(0), x(1).trim.toInt))
.toDF()
//Register the DataFrame as a temporary view
peopleDF.createOrReplaceTempView("people")
//SQL statements can be run by using the sql methods provided by Spark
val teenagersDF = spark.sql("select name, age from people where age between 13 and 19")
//The columns of a row in the result can be accessed by field index
//(结果中的行的列可以通过字段索引访问)
teenagersDF.map(teenager => s"Name: ${teenager(0)}").show()
//or by field name
teenagersDF.map(teenager => s"Name: ${teenager.getAs[String]("name")}").show()
//No pre-defined encoders for Dataset[Map[K,V]], define explicitly
//(Dataset[Map[K,V]] 没有预定义的编码器, 显式定义)
implicit val mapEncoder = org.apache.spark.sql.Encoders.kryo[Map[String, Any]]
//Primitive types and case classes can be also defined as
//(原始类型和case类也可以定义为隐式val )
//implicit val stringIntMapEncoder: Encoder[Map[String, Any]] = ExpressionEncoder()
//row.getValuesMap[T] retrieves multiple columns at once into a Map[String, T]
teenagersDF.map(teenager =>
teenager.getValuesMap[Any](List("name", "age"))
).foreach(println(_))//.collect()
// $example off: schema_inferring$
}
private def runProgrammaticSchemaDemo(spark: SparkSession) = {
import spark.implicits._
// $example on: programmatic_schema$
//Create an RDD
val peopleRDD = spark.sparkContext.textFile("/Users/hadoop/app/spark/examples/src/main/resources/people.txt")
//The schema is encoded in a string
val schemaString = "name age"
//Generate the schema based on the string of schema
val fields = schemaString.split(" ")
.map(fieldName => StructField(fieldName, StringType, nullable = true))
val schema = StructType(fields)
//Convert records of the RDD (people) to Rows
val rowRDD = peopleRDD
.map(_.split(","))
.map(attributes => Row(attributes(0), attributes(1).trim))
//Apply the schema to the RDD
val peopleDF = spark.createDataFrame(rowRDD, schema)
//Creates a temporary view using the DataFrame
peopleDF.createOrReplaceTempView("people")
//SQL can be run over a temporary view created using DataFrames
val results = spark.sql("select name from people")
//The results of SQL queries are DataFrames and support all the normal RDD operations
//The columns of a row in the result can be accessed by field index or by field name
results.map(attributes => s"Name: ${attributes(0)}").show()
// $exmaple off: programmatic_schema$
}
}