zoukankan      html  css  js  c++  java
  • pyhthon Opencv截取视频中的图片

    import os
    import cv2    ##加载OpenCV模块
    
    def video2frames(pathIn='', 
                     pathOut='', 
                     imgname='',
                     only_output_video_info = False, 
                     extract_time_points = None, 
                     initial_extract_time = 0,
                     end_extract_time = None,
                     extract_time_interval = -1, 
                     output_prefix = 'img',
                     
                     jpg_quality = 100,
                     isColor = True):
        '''
        pathIn:视频的路径,比如:F:python_tutorials	est.mp4
        pathOut:设定提取的图片保存在哪个文件夹下,比如:F:python_tutorialsframes1。如果该文件夹不存在,函数将自动创建它
        only_output_video_info:如果为True,只输出视频信息(长度、帧数和帧率),不提取图片
        extract_time_points:提取的时间点,单位为秒,为元组数据,比如,(2, 3, 5)表示只提取视频第2秒, 第3秒,第5秒图片
        initial_extract_time:提取的起始时刻,单位为秒,默认为0(即从视频最开始提取)
        end_extract_time:提取的终止时刻,单位为秒,默认为None(即视频终点)
        extract_time_interval:提取的时间间隔,单位为秒,默认为-1(即输出时间范围内的所有帧)
        output_prefix:图片的前缀名,默认为frame,图片的名称将为frame_000001.jpg、frame_000002.jpg、frame_000003.jpg......
        jpg_quality:设置图片质量,范围为0到100,默认为100(质量最佳)
        isColor:如果为False,输出的将是黑白图片
        '''
        
        cap = cv2.VideoCapture(pathIn)  ##打开视频文件
        n_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))  ##视频的帧数
        fps = cap.get(cv2.CAP_PROP_FPS)  ##视频的帧率
        print(fps)
        dur = n_frames/fps  ##视频的时间
        
        ##如果only_output_video_info=True, 只输出视频信息,不提取图片
        if only_output_video_info:
            print('only output the video information (without extract frames)::::::')
            print("Duration of the video: {} seconds".format(dur))
            print("Number of frames: {}".format(n_frames))
            print("Frames per second (FPS): {}".format(fps)) 
        
        ##提取特定时间点图片
        elif extract_time_points is not None:
            if max(extract_time_points) > dur:   ##判断时间点是否符合要求
                raise NameError('the max time point is larger than the video duration....')
            try:
                os.mkdir(pathOut)
            except OSError:
                pass
            success = True
            count = 0
            while success and count < len(extract_time_points):
                cap.set(cv2.CAP_PROP_POS_MSEC, (1000*extract_time_points[count])) 
                success,image = cap.read()
                if success:
                    if not isColor:
                        image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)  ##转化为黑白图片
                    print('Write a new frame: {}, {}th'.format(success, count+1))
                    cv2.imwrite(os.path.join(pathOut, "{}_{}.jpg".format(output_prefix, imgname)), image, [int(cv2.IMWRITE_JPEG_QUALITY), jpg_quality])     # save frame as JPEG file
                    count = count + 1
    
        else:
            ##判断起始时间、终止时间参数是否符合要求
            if initial_extract_time > dur:
                raise NameError('initial extract time is larger than the video duration....')
            if end_extract_time is not None:
                if end_extract_time > dur:
                    raise NameError('end extract time is larger than the video duration....')
                if initial_extract_time > end_extract_time:
                    raise NameError('end extract time is less than the initial extract time....')
            
            ##时间范围内的每帧图片都输出
            if extract_time_interval == -1:
                if initial_extract_time > 0:
                    cap.set(cv2.CAP_PROP_POS_MSEC, (1000*initial_extract_time)) 
                try:
                    os.mkdir(pathOut)
                except OSError:
                    pass
                print('Converting a video into frames......')
                if end_extract_time is not None:
                    N = (end_extract_time - initial_extract_time)*fps + 1
                    success = True
                    count = 0
                    while success and count < N:
                        success,image = cap.read()
                        if success:
                            if not isColor:
                                image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
                            print('Write a new frame: {}, {}/{}'.format(success, count+1, n_frames))
                            cv2.imwrite(os.path.join(pathOut, "{}_{}.jpg".format(output_prefix, imgname)), image, [int(cv2.IMWRITE_JPEG_QUALITY), jpg_quality])     # save frame as JPEG file
                            count =  count + 1
                else:
                    success = True
                    count = 0
                    while success:
                        success,image = cap.read()
                        if success:
                            if not isColor:
                                image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
                            print('Write a new frame: {}, {}/{}'.format(success, count+1, n_frames))
                            cv2.imwrite(os.path.join(pathOut, "{}_{}.jpg".format(output_prefix, imgname)), image, [int(cv2.IMWRITE_JPEG_QUALITY), jpg_quality])     # save frame as JPEG file
                            count =  count + 1
    
            ##判断提取时间间隔设置是否符合要求    
            elif extract_time_interval > 0 and extract_time_interval < 1/fps:
                raise NameError('extract_time_interval is less than the frame time interval....')
            elif extract_time_interval > (n_frames/fps):
                raise NameError('extract_time_interval is larger than the duration of the video....')
            
            ##时间范围内每隔一段时间输出一张图片
            else:
                try:
                    os.mkdir(pathOut)
                except OSError:
                    pass
                print('Converting a video into frames......')
                if end_extract_time is not None:
                    N = (end_extract_time - initial_extract_time)/extract_time_interval + 1
                    success = True
                    count = 0
                    while success and count < N:
                        cap.set(cv2.CAP_PROP_POS_MSEC, (1000*initial_extract_time+count*1000*extract_time_interval)) 
                        success,image = cap.read()
                        if success:
                            if not isColor:
                                image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
                            print('Write a new frame: {},{}th'.format(success, count+1))
                            cv2.imwrite(os.path.join(pathOut, "{}_{}.jpg".format(output_prefix,imgname)), image, [int(cv2.IMWRITE_JPEG_QUALITY), jpg_quality])     # save frame as JPEG file
                            count = count + 1
                else:
                    success = True
                    count = 0
                    while success:
                        cap.set(cv2.CAP_PROP_POS_MSEC, (1000*initial_extract_time+count*1000*extract_time_interval)) 
                        success,image = cap.read()
                        if success:
                            if not isColor:
                                image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
                            print('Write a new frame: {}, {}th'.format(success, count+1))
                            cv2.imwrite(os.path.join(pathOut, "{}_{}.jpg".format(output_prefix, imgname)), image, [int(cv2.IMWRITE_JPEG_QUALITY), jpg_quality])     # save frame as JPEG file
                            count = count + 1
    
    
    if __name__ == "__main__":
        pathIn = 'C:/Users/Administrator/www/video_back/video_back/upload/1.mp4'
        pathOut = 'C:/Users/Administrator/www/video_back/video_back/upload/'
        imgname = 'dog'
        video2frames(pathIn,pathOut,imgname,extract_time_points=(1,))
  • 相关阅读:
    day06
    前端基础day02
    前端基础day01
    javascript基础语法
    day50 设置元素大小和边框
    day01 前端概述 html基础语法 html常用标签 css基本语法 css长度单位 css颜色单位 CSS常用属性-字体属性 CSS常用属性-文本属性 markdown的使用
    day 42 前端概述 HTML基础语法 HTML常用标签 CSS基本语法 CSS长度单位 CSS颜色单位 CSS选择器 CSS常用属性-字体属性 CSS常用属性文本属性 markdown的使用
    day41 pymysql模块介绍,增删改,简单查询以及sql注入问题,提交查询语句并且拿到查询结果,navicat工具,视图,触发器,事务,流程控制,函数,三种数据库开发模式,存储过程
    day40 增删改 单表查询的语法与关键字的执行优先级 简单查询,where关键字,group by关键字,having关键字,order by关键字,limit关键字,正则表达式,多表连接,子查询,查询语句的执行优先级
    NGUI动态创建UILabel
  • 原文地址:https://www.cnblogs.com/sumafan/p/10816331.html
Copyright © 2011-2022 走看看