zoukankan      html  css  js  c++  java
  • 【高精度】模板 (C++)

    //n为长度

    1、高精加 

    复杂度:O(n)

    #include<iostream>  
    #include<cstring>  
    #include<algorithm>  
    using namespace std;  
    const int L=110;  
    string add(string a,string b)//只限两个非负整数相加  
    {  
        string ans;  
        int na[L]={0},nb[L]={0};  
        int la=a.size(),lb=b.size();  
        for(int i=0;i<la;i++) na[la-1-i]=a[i]-'0';  
        for(int i=0;i<lb;i++) nb[lb-1-i]=b[i]-'0';  
        int lmax=la>lb?la:lb;  
        for(int i=0;i<lmax;i++) na[i]+=nb[i],na[i+1]+=na[i]/10,na[i]%=10;  
        if(na[lmax]) lmax++;  
        for(int i=lmax-1;i>=0;i--) ans+=na[i]+'0';  
        return ans;  
    }  
    int main()  
    {  
        string a,b;  
        while(cin>>a>>b) cout<<add(a,b)<<endl;  
        return 0;  
    }  
    View Code

    2、高精减

    复杂度:O(n)

    #include<iostream>  
    #include<cstring>  
    #include<algorithm>  
    using namespace std;  
    const int L=110;  
    string sub(string a,string b)//只限大的非负整数减小的非负整数  
    {  
        string ans;  
        int na[L]={0},nb[L]={0};  
        int la=a.size(),lb=b.size();  
        for(int i=0;i<la;i++) na[la-1-i]=a[i]-'0';  
        for(int i=0;i<lb;i++) nb[lb-1-i]=b[i]-'0';  
        int lmax=la>lb?la:lb;  
        for(int i=0;i<lmax;i++)  
        {  
            na[i]-=nb[i];  
            if(na[i]<0) na[i]+=10,na[i+1]--;  
        }  
        while(!na[--lmax]&&lmax>0)  ;lmax++;  
        for(int i=lmax-1;i>=0;i--) ans+=na[i]+'0';  
        return ans;  
    }  
    int main()  
    {  
        string a,b;  
        while(cin>>a>>b) cout<<sub(a,b)<<endl;  
        return 0;  
    }  
    View Code

    3、高精乘

    复杂度:O(n*n)

    #include<iostream>  
    #include<cstring>  
    #include<algorithm>  
    using namespace std;  
    const int L=110;  
    string mul(string a,string b)//高精度乘法a,b,均为非负整数  
    {  
        string s;  
        int na[L],nb[L],nc[L],La=a.size(),Lb=b.size();//na存储被乘数,nb存储乘数,nc存储积  
        fill(na,na+L,0);fill(nb,nb+L,0);fill(nc,nc+L,0);//将na,nb,nc都置为0  
        for(int i=La-1;i>=0;i--) na[La-i]=a[i]-'0';//将字符串表示的大整形数转成i整形数组表示的大整形数  
        for(int i=Lb-1;i>=0;i--) nb[Lb-i]=b[i]-'0';  
        for(int i=1;i<=La;i++)  
            for(int j=1;j<=Lb;j++)  
            nc[i+j-1]+=na[i]*nb[j];//a的第i位乘以b的第j位为积的第i+j-1位(先不考虑进位)  
        for(int i=1;i<=La+Lb;i++)  
            nc[i+1]+=nc[i]/10,nc[i]%=10;//统一处理进位  
        if(nc[La+Lb]) s+=nc[La+Lb]+'0';//判断第i+j位上的数字是不是0  
        for(int i=La+Lb-1;i>=1;i--)  
            s+=nc[i]+'0';//将整形数组转成字符串  
        return s;  
    }  
    int main()  
    {  
        string a,b;  
        while(cin>>a>>b) cout<<mul(a,b)<<endl;  
        return 0;  
    }  
    View Code

    4、高精除/模

    复杂度:O(n*n)

    #include<iostream>  
    #include<cstring>  
    #include<algorithm>  
    using namespace std;  
    const int L=110;  
    int sub(int *a,int *b,int La,int Lb)  
    {  
        if(La<Lb) return -1;//如果a小于b,则返回-1  
        if(La==Lb)  
        {  
            for(int i=La-1;i>=0;i--)  
                if(a[i]>b[i]) break;  
                else if(a[i]<b[i]) return -1;//如果a小于b,则返回-1  
      
        }  
        for(int i=0;i<La;i++)//高精度减法  
        {  
            a[i]-=b[i];  
            if(a[i]<0) a[i]+=10,a[i+1]--;  
        }  
        for(int i=La-1;i>=0;i--)  
            if(a[i]) return i+1;//返回差的位数  
        return 0;//返回差的位数  
      
    }  
    string div(string n1,string n2,int nn)//n1,n2是字符串表示的被除数,除数,nn是选择返回商还是余数  
    {  
        string s,v;//s存商,v存余数  
         int a[L],b[L],r[L],La=n1.size(),Lb=n2.size(),i,tp=La;//a,b是整形数组表示被除数,除数,tp保存被除数的长度  
         fill(a,a+L,0);fill(b,b+L,0);fill(r,r+L,0);//数组元素都置为0  
         for(i=La-1;i>=0;i--) a[La-1-i]=n1[i]-'0';  
         for(i=Lb-1;i>=0;i--) b[Lb-1-i]=n2[i]-'0';  
         if(La<Lb || (La==Lb && n1<n2)) {  
                //cout<<0<<endl;  
         return n1;}//如果a<b,则商为0,余数为被除数  
         int t=La-Lb;//除被数和除数的位数之差  
         for(int i=La-1;i>=0;i--)//将除数扩大10^t倍  
            if(i>=t) b[i]=b[i-t];  
            else b[i]=0;  
         Lb=La;  
         for(int j=0;j<=t;j++)  
         {  
             int temp;  
             while((temp=sub(a,b+j,La,Lb-j))>=0)//如果被除数比除数大继续减  
             {  
                 La=temp;  
                 r[t-j]++;  
             }  
         }  
         for(i=0;i<L-10;i++) r[i+1]+=r[i]/10,r[i]%=10;//统一处理进位  
         while(!r[i]) i--;//将整形数组表示的商转化成字符串表示的  
         while(i>=0) s+=r[i--]+'0';  
         //cout<<s<<endl;  
         i=tp;  
         while(!a[i]) i--;//将整形数组表示的余数转化成字符串表示的</span>  
         while(i>=0) v+=a[i--]+'0';  
         if(v.empty()) v="0";  
         //cout<<v<<endl;  
         if(nn==1) return s;  
         if(nn==2) return v;  
    }  
    int main()  
    {  
        string a,b;  
        while(cin>>a>>b) cout<<div(a,b,1)<<endl;  
        return 0;  
    }  
    View Code

    5、高精阶乘

    复杂度:O(n*n)

    #include<iostream>  
    #include<cstring>  
    #include<algorithm>  
    using namespace std;  
    const int L=100005;  
    int a[L];  
    string fac(int n)  
    {  
        string ans;  
        if(n==0) return "1";  
        fill(a,a+L,0);  
        int s=0,m=n;  
        while(m) a[++s]=m%10,m/=10;  
        for(int i=n-1;i>=2;i--)  
        {  
            int w=0;  
            for(int j=1;j<=s;j++) a[j]=a[j]*i+w,w=a[j]/10,a[j]=a[j]%10;  
            while(w) a[++s]=w%10,w/=10;  
        }  
        while(!a[s]) s--;  
        while(s>=1) ans+=a[s--]+'0';  
        return ans;  
    }  
    int main()  
    {  
        int n;  
        while(cin>>n) cout<<fac(n)<<endl;  
        return 0;  
    }  
    View Code

    6、高精度幂

    复杂度:O(nlognlogm)

    #include <iostream>  
    #include <cstdio>  
    #include <algorithm>  
    #include <cstring>  
    #include <cmath>  
    #include <map>  
    #include <queue>  
    #include <set>  
    #include <vector>  
    using namespace std;  
    #define L(x) (1 << (x))  
    const double PI = acos(-1.0);  
    const int Maxn = 133015;  
    double ax[Maxn], ay[Maxn], bx[Maxn], by[Maxn];  
    char sa[Maxn/2],sb[Maxn/2];  
    int sum[Maxn];  
    int x1[Maxn],x2[Maxn];  
    int revv(int x, int bits)  
    {  
        int ret = 0;  
        for (int i = 0; i < bits; i++)  
        {  
            ret <<= 1;  
            ret |= x & 1;  
            x >>= 1;  
        }  
        return ret;  
    }  
    void fft(double * a, double * b, int n, bool rev)  
    {  
        int bits = 0;  
        while (1 << bits < n) ++bits;  
        for (int i = 0; i < n; i++)  
        {  
            int j = revv(i, bits);  
            if (i < j)  
                swap(a[i], a[j]), swap(b[i], b[j]);  
        }  
        for (int len = 2; len <= n; len <<= 1)  
        {  
            int half = len >> 1;  
            double wmx = cos(2 * PI / len), wmy = sin(2 * PI / len);  
            if (rev) wmy = -wmy;  
            for (int i = 0; i < n; i += len)  
            {  
                double wx = 1, wy = 0;  
                for (int j = 0; j < half; j++)  
                {  
                    double cx = a[i + j], cy = b[i + j];  
                    double dx = a[i + j + half], dy = b[i + j + half];  
                    double ex = dx * wx - dy * wy, ey = dx * wy + dy * wx;  
                    a[i + j] = cx + ex, b[i + j] = cy + ey;  
                    a[i + j + half] = cx - ex, b[i + j + half] = cy - ey;  
                    double wnx = wx * wmx - wy * wmy, wny = wx * wmy + wy * wmx;  
                    wx = wnx, wy = wny;  
                }  
            }  
        }  
        if (rev)  
        {  
            for (int i = 0; i < n; i++)  
                a[i] /= n, b[i] /= n;  
        }  
    }  
    int solve(int a[],int na,int b[],int nb,int ans[])  
    {  
        int len = max(na, nb), ln;  
        for(ln=0; L(ln)<len; ++ln);  
        len=L(++ln);  
        for (int i = 0; i < len ; ++i)  
        {  
            if (i >= na) ax[i] = 0, ay[i] =0;  
            else ax[i] = a[i], ay[i] = 0;  
        }  
        fft(ax, ay, len, 0);  
        for (int i = 0; i < len; ++i)  
        {  
            if (i >= nb) bx[i] = 0, by[i] = 0;  
            else bx[i] = b[i], by[i] = 0;  
        }  
        fft(bx, by, len, 0);  
        for (int i = 0; i < len; ++i)  
        {  
            double cx = ax[i] * bx[i] - ay[i] * by[i];  
            double cy = ax[i] * by[i] + ay[i] * bx[i];  
            ax[i] = cx, ay[i] = cy;  
        }  
        fft(ax, ay, len, 1);  
        for (int i = 0; i < len; ++i)  
            ans[i] = (int)(ax[i] + 0.5);  
        return len;  
    }  
    string mul(string sa,string sb)  
    {  
        int l1,l2,l;  
        int i;  
        string ans;  
        memset(sum, 0, sizeof(sum));  
        l1 = sa.size();  
        l2 = sb.size();  
        for(i = 0; i < l1; i++)  
            x1[i] = sa[l1 - i - 1]-'0';  
        for(i = 0; i < l2; i++)  
            x2[i] = sb[l2-i-1]-'0';  
        l = solve(x1, l1, x2, l2, sum);  
        for(i = 0; i<l || sum[i] >= 10; i++) // 进位  
        {  
            sum[i + 1] += sum[i] / 10;  
            sum[i] %= 10;  
        }  
        l = i;  
        while(sum[l] <= 0 && l>0)    l--; // 检索最高位  
        for(i = l; i >= 0; i--)    ans+=sum[i] + '0'; // 倒序输出  
        return ans;  
    }  
    string Pow(string a,int n)  
    {  
        if(n==1) return a;  
        if(n&1) return mul(Pow(a,n-1),a);  
        string ans=Pow(a,n/2);  
        return mul(ans,ans);  
    }  
    int main()  
    {  
        cin.sync_with_stdio(false);  
        string a;  
        int b;  
        while(cin>>a>>b) cout<<Pow(a,b)<<endl;  
        return 0;  
    }  
    View Code

    7、高精GCD

    复杂度:无法估计

    #include<iostream>  
    #include<cstring>  
    #include<algorithm>  
    using namespace std;  
    const int L=110;  
    string add(string a,string b)  
    {  
        string ans;  
        int na[L]={0},nb[L]={0};  
        int la=a.size(),lb=b.size();  
        for(int i=0;i<la;i++) na[la-1-i]=a[i]-'0';  
        for(int i=0;i<lb;i++) nb[lb-1-i]=b[i]-'0';  
        int lmax=la>lb?la:lb;  
        for(int i=0;i<lmax;i++) na[i]+=nb[i],na[i+1]+=na[i]/10,na[i]%=10;  
        if(na[lmax]) lmax++;  
        for(int i=lmax-1;i>=0;i--) ans+=na[i]+'0';  
        return ans;  
    }  
    string mul(string a,string b)  
    {  
        string s;  
        int na[L],nb[L],nc[L],La=a.size(),Lb=b.size();//na存储被乘数,nb存储乘数,nc存储积  
        fill(na,na+L,0);fill(nb,nb+L,0);fill(nc,nc+L,0);//将na,nb,nc都置为0  
        for(int i=La-1;i>=0;i--) na[La-i]=a[i]-'0';//将字符串表示的大整形数转成i整形数组表示的大整形数  
        for(int i=Lb-1;i>=0;i--) nb[Lb-i]=b[i]-'0';  
        for(int i=1;i<=La;i++)  
            for(int j=1;j<=Lb;j++)  
            nc[i+j-1]+=na[i]*nb[j];//a的第i位乘以b的第j位为积的第i+j-1位(先不考虑进位)  
        for(int i=1;i<=La+Lb;i++)  
            nc[i+1]+=nc[i]/10,nc[i]%=10;//统一处理进位  
        if(nc[La+Lb]) s+=nc[La+Lb]+'0';//判断第i+j位上的数字是不是0  
        for(int i=La+Lb-1;i>=1;i--)  
            s+=nc[i]+'0';//将整形数组转成字符串  
        return s;  
    }  
    int sub(int *a,int *b,int La,int Lb)  
    {  
        if(La<Lb) return -1;//如果a小于b,则返回-1  
        if(La==Lb)  
        {  
            for(int i=La-1;i>=0;i--)  
                if(a[i]>b[i]) break;  
                else if(a[i]<b[i]) return -1;//如果a小于b,则返回-1  
      
        }  
        for(int i=0;i<La;i++)//高精度减法  
        {  
            a[i]-=b[i];  
            if(a[i]<0) a[i]+=10,a[i+1]--;  
        }  
        for(int i=La-1;i>=0;i--)  
            if(a[i]) return i+1;//返回差的位数  
        return 0;//返回差的位数  
      
    }  
    string div(string n1,string n2,int nn)//n1,n2是字符串表示的被除数,除数,nn是选择返回商还是余数  
    {  
        string s,v;//s存商,v存余数  
         int a[L],b[L],r[L],La=n1.size(),Lb=n2.size(),i,tp=La;//a,b是整形数组表示被除数,除数,tp保存被除数的长度  
         fill(a,a+L,0);fill(b,b+L,0);fill(r,r+L,0);//数组元素都置为0  
         for(i=La-1;i>=0;i--) a[La-1-i]=n1[i]-'0';  
         for(i=Lb-1;i>=0;i--) b[Lb-1-i]=n2[i]-'0';  
         if(La<Lb || (La==Lb && n1<n2)) {  
                //cout<<0<<endl;  
         return n1;}//如果a<b,则商为0,余数为被除数  
         int t=La-Lb;//除被数和除数的位数之差  
         for(int i=La-1;i>=0;i--)//将除数扩大10^t倍  
            if(i>=t) b[i]=b[i-t];  
            else b[i]=0;  
         Lb=La;  
         for(int j=0;j<=t;j++)  
         {  
             int temp;  
             while((temp=sub(a,b+j,La,Lb-j))>=0)//如果被除数比除数大继续减  
             {  
                 La=temp;  
                 r[t-j]++;  
             }  
         }  
         for(i=0;i<L-10;i++) r[i+1]+=r[i]/10,r[i]%=10;//统一处理进位  
         while(!r[i]) i--;//将整形数组表示的商转化成字符串表示的  
         while(i>=0) s+=r[i--]+'0';  
         //cout<<s<<endl;  
         i=tp;  
         while(!a[i]) i--;//将整形数组表示的余数转化成字符串表示的</span>  
         while(i>=0) v+=a[i--]+'0';  
         if(v.empty()) v="0";  
         //cout<<v<<endl;  
         if(nn==1) return s;  
         if(nn==2) return v;  
    }  
    bool judge(string s)//判断s是否为全0串  
    {  
        for(int i=0;i<s.size();i++)  
            if(s[i]!='0') return false;  
        return true;  
    }  
    string gcd(string a,string b)//求最大公约数  
    {  
        string t;  
        while(!judge(b))//如果余数不为0,继续除  
        {  
            t=a;//保存被除数的值  
            a=b;//用除数替换被除数  
            b=div(t,b,2);//用余数替换除数  
        }  
        return a;  
    }  
    int main()  
    {  
        cin.sync_with_stdio(false);  
        string a,b;  
        while(cin>>a>>b) cout<<gcd(a,b)<<endl;  
        return 0;  
    }  
    View Code

    8、高精进制转换

    复杂度:O(n*n)

    #include<iostream>  
    #include<algorithm>  
    using namespace std;  
    //将字符串表示的10进制大整数转换为m进制的大整数  
    //并返回m进制大整数的字符串  
    bool judge(string s)//判断串是否为全零串  
    {  
        for(int i=0;i<s.size();i++)  
            if(s[i]!='0') return 1;  
        return 0;  
    }  
    string solve(string s,int n,int m)//n进制转m进制只限0-9进制,若涉及带字母的进制,稍作修改即可  
    {  
        string r,ans;  
        int d=0;  
        if(!judge(s)) return "0";//特判  
        while(judge(s))//被除数不为0则继续  
        {  
            for(int i=0;i<s.size();i++)  
            {  
                r+=(d*n+s[i]-'0')/m+'0';//求出商  
                d=(d*n+(s[i]-'0'))%m;//求出余数  
            }  
           s=r;//把商赋给下一次的被除数  
           r="";//把商清空  
            ans+=d+'0';//加上进制转换后数字  
            d=0;//清空余数  
        }  
        reverse(ans.begin(),ans.end());//倒置下  
        return ans;  
    }  
    int main()  
    {  
        string s;  
        while(cin>>s)  
        {  
            cout<<solve(s,10,7)<<endl;  
        }  
        return 0;  
    }  
    View Code

    9、高精平方根

    复杂度:O(n*n*n)

    #include<iostream>  
    #include<cstring>  
    #include<cstdio>  
    #include<algorithm>  
    using namespace std;  
    const int L=2015;  
    string add(string a,string b)//只限两个非负整数相加  
    {  
        string ans;  
        int na[L]={0},nb[L]={0};  
        int la=a.size(),lb=b.size();  
        for(int i=0;i<la;i++) na[la-1-i]=a[i]-'0';  
        for(int i=0;i<lb;i++) nb[lb-1-i]=b[i]-'0';  
        int lmax=la>lb?la:lb;  
        for(int i=0;i<lmax;i++) na[i]+=nb[i],na[i+1]+=na[i]/10,na[i]%=10;  
        if(na[lmax]) lmax++;  
        for(int i=lmax-1;i>=0;i--) ans+=na[i]+'0';  
        return ans;  
    }  
    string sub(string a,string b)//只限大的非负整数减小的非负整数  
    {  
        string ans;  
        int na[L]={0},nb[L]={0};  
        int la=a.size(),lb=b.size();  
        for(int i=0;i<la;i++) na[la-1-i]=a[i]-'0';  
        for(int i=0;i<lb;i++) nb[lb-1-i]=b[i]-'0';  
        int lmax=la>lb?la:lb;  
        for(int i=0;i<lmax;i++)  
        {  
            na[i]-=nb[i];  
            if(na[i]<0) na[i]+=10,na[i+1]--;  
        }  
        while(!na[--lmax]&&lmax>0)  ;lmax++;  
        for(int i=lmax-1;i>=0;i--) ans+=na[i]+'0';  
        return ans;  
    }  
    string mul(string a,string b)//高精度乘法a,b,均为非负整数  
    {  
        string s;  
        int na[L],nb[L],nc[L],La=a.size(),Lb=b.size();//na存储被乘数,nb存储乘数,nc存储积  
        fill(na,na+L,0);fill(nb,nb+L,0);fill(nc,nc+L,0);//将na,nb,nc都置为0  
        for(int i=La-1;i>=0;i--) na[La-i]=a[i]-'0';//将字符串表示的大整形数转成i整形数组表示的大整形数  
        for(int i=Lb-1;i>=0;i--) nb[Lb-i]=b[i]-'0';  
        for(int i=1;i<=La;i++)  
            for(int j=1;j<=Lb;j++)  
            nc[i+j-1]+=na[i]*nb[j];//a的第i位乘以b的第j位为积的第i+j-1位(先不考虑进位)  
        for(int i=1;i<=La+Lb;i++)  
            nc[i+1]+=nc[i]/10,nc[i]%=10;//统一处理进位  
        if(nc[La+Lb]) s+=nc[La+Lb]+'0';//判断第i+j位上的数字是不是0  
        for(int i=La+Lb-1;i>=1;i--)  
            s+=nc[i]+'0';//将整形数组转成字符串  
        return s;  
    }  
    int sub(int *a,int *b,int La,int Lb)  
    {  
        if(La<Lb) return -1;//如果a小于b,则返回-1  
        if(La==Lb)  
        {  
            for(int i=La-1;i>=0;i--)  
                if(a[i]>b[i]) break;  
                else if(a[i]<b[i]) return -1;//如果a小于b,则返回-1  
      
        }  
        for(int i=0;i<La;i++)//高精度减法  
        {  
            a[i]-=b[i];  
            if(a[i]<0) a[i]+=10,a[i+1]--;  
        }  
        for(int i=La-1;i>=0;i--)  
            if(a[i]) return i+1;//返回差的位数  
        return 0;//返回差的位数  
      
    }  
    string div(string n1,string n2,int nn)//n1,n2是字符串表示的被除数,除数,nn是选择返回商还是余数  
    {  
        string s,v;//s存商,v存余数  
         int a[L],b[L],r[L],La=n1.size(),Lb=n2.size(),i,tp=La;//a,b是整形数组表示被除数,除数,tp保存被除数的长度  
         fill(a,a+L,0);fill(b,b+L,0);fill(r,r+L,0);//数组元素都置为0  
         for(i=La-1;i>=0;i--) a[La-1-i]=n1[i]-'0';  
         for(i=Lb-1;i>=0;i--) b[Lb-1-i]=n2[i]-'0';  
         if(La<Lb || (La==Lb && n1<n2)) {  
                //cout<<0<<endl;  
         return n1;}//如果a<b,则商为0,余数为被除数  
         int t=La-Lb;//除被数和除数的位数之差  
         for(int i=La-1;i>=0;i--)//将除数扩大10^t倍  
            if(i>=t) b[i]=b[i-t];  
            else b[i]=0;  
         Lb=La;  
         for(int j=0;j<=t;j++)  
         {  
             int temp;  
             while((temp=sub(a,b+j,La,Lb-j))>=0)//如果被除数比除数大继续减  
             {  
                 La=temp;  
                 r[t-j]++;  
             }  
         }  
         for(i=0;i<L-10;i++) r[i+1]+=r[i]/10,r[i]%=10;//统一处理进位  
         while(!r[i]) i--;//将整形数组表示的商转化成字符串表示的  
         while(i>=0) s+=r[i--]+'0';  
         //cout<<s<<endl;  
         i=tp;  
         while(!a[i]) i--;//将整形数组表示的余数转化成字符串表示的</span>  
         while(i>=0) v+=a[i--]+'0';  
         if(v.empty()) v="0";  
         //cout<<v<<endl;  
         if(nn==1) return s;  
         if(nn==2) return v;  
    }  
    bool cmp(string a,string b)  
    {  
        if(a.size()<b.size()) return 1;//a小于等于b返回真  
        if(a.size()==b.size()&&a<=b) return 1;  
        return 0;  
    }  
    string BigInterSqrt(string n)  
    {  
        string l="1",r=n,mid,ans;  
        while(cmp(l,r))  
        {  
            mid=div(add(l,r),"2",1);  
            if(cmp(mul(mid,mid),n)) ans=mid,l=add(mid,"1");  
            else r=sub(mid,"1");  
        }  
        return ans;  
    }  
    string DeletePreZero(string s)  
    {  
        int i;  
        for(i=0;i<s.size();i++)  
            if(s[i]!='0') break;  
        return s.substr(i);  
    }  
    int main()  
    {  
         //freopen("in.txt","r",stdin);  
       //  freopen("out.txt","w",stdout);  
        string n;  
        int t;  
        cin>>t;  
        while(t--)  
        {  
            cin>>n;  
            n=DeletePreZero(n);  
            cout<<BigInterSqrt(n)<<endl;  
            //cout<<BigInterSqrt(n).size()<<endl;  
        }  
        return 0;  
    }  
    View Code

    10、FFT优化高精乘

    复杂度:O(nlogn)

    #include <iostream>  
    #include <cstdio>  
    #include <algorithm>  
    #include <cstring>  
    #include <cmath>  
    #include <map>  
    #include <queue>  
    #include <set>  
    #include <vector>  
    using namespace std;  
    #define L(x) (1 << (x))  
    const double PI = acos(-1.0);  
    const int Maxn = 133015;  
    double ax[Maxn], ay[Maxn], bx[Maxn], by[Maxn];  
    char sa[Maxn/2],sb[Maxn/2];  
    int sum[Maxn];  
    int x1[Maxn],x2[Maxn];  
    int revv(int x, int bits)  
    {  
        int ret = 0;  
        for (int i = 0; i < bits; i++)  
        {  
            ret <<= 1;  
            ret |= x & 1;  
            x >>= 1;  
        }  
        return ret;  
    }  
    void fft(double * a, double * b, int n, bool rev)  
    {  
        int bits = 0;  
        while (1 << bits < n) ++bits;  
        for (int i = 0; i < n; i++)  
        {  
            int j = revv(i, bits);  
            if (i < j)  
                swap(a[i], a[j]), swap(b[i], b[j]);  
        }  
        for (int len = 2; len <= n; len <<= 1)  
        {  
            int half = len >> 1;  
            double wmx = cos(2 * PI / len), wmy = sin(2 * PI / len);  
            if (rev) wmy = -wmy;  
            for (int i = 0; i < n; i += len)  
            {  
                double wx = 1, wy = 0;  
                for (int j = 0; j < half; j++)  
                {  
                    double cx = a[i + j], cy = b[i + j];  
                    double dx = a[i + j + half], dy = b[i + j + half];  
                    double ex = dx * wx - dy * wy, ey = dx * wy + dy * wx;  
                    a[i + j] = cx + ex, b[i + j] = cy + ey;  
                    a[i + j + half] = cx - ex, b[i + j + half] = cy - ey;  
                    double wnx = wx * wmx - wy * wmy, wny = wx * wmy + wy * wmx;  
                    wx = wnx, wy = wny;  
                }  
            }  
        }  
        if (rev)  
        {  
            for (int i = 0; i < n; i++)  
                a[i] /= n, b[i] /= n;  
        }  
    }  
    int solve(int a[],int na,int b[],int nb,int ans[])  
    {  
        int len = max(na, nb), ln;  
        for(ln=0; L(ln)<len; ++ln);  
        len=L(++ln);  
        for (int i = 0; i < len ; ++i)  
        {  
            if (i >= na) ax[i] = 0, ay[i] =0;  
            else ax[i] = a[i], ay[i] = 0;  
        }  
        fft(ax, ay, len, 0);  
        for (int i = 0; i < len; ++i)  
        {  
            if (i >= nb) bx[i] = 0, by[i] = 0;  
            else bx[i] = b[i], by[i] = 0;  
        }  
        fft(bx, by, len, 0);  
        for (int i = 0; i < len; ++i)  
        {  
            double cx = ax[i] * bx[i] - ay[i] * by[i];  
            double cy = ax[i] * by[i] + ay[i] * bx[i];  
            ax[i] = cx, ay[i] = cy;  
        }  
        fft(ax, ay, len, 1);  
        for (int i = 0; i < len; ++i)  
            ans[i] = (int)(ax[i] + 0.5);  
        return len;  
    }  
    string mul(string sa,string sb)  
    {  
        int l1,l2,l;  
        int i;  
        string ans;  
        memset(sum, 0, sizeof(sum));  
        l1 = sa.size();  
        l2 = sb.size();  
        for(i = 0; i < l1; i++)  
            x1[i] = sa[l1 - i - 1]-'0';  
        for(i = 0; i < l2; i++)  
            x2[i] = sb[l2-i-1]-'0';  
        l = solve(x1, l1, x2, l2, sum);  
        for(i = 0; i<l || sum[i] >= 10; i++) // 进位  
        {  
            sum[i + 1] += sum[i] / 10;  
            sum[i] %= 10;  
        }  
        l = i;  
        while(sum[l] <= 0 && l>0)    l--; // 检索最高位  
        for(i = l; i >= 0; i--)    ans+=sum[i] + '0'; // 倒序输出  
        return ans;  
    }  
    int main()  
    {  
        cin.sync_with_stdio(false);  
        string a,b;  
        while(cin>>a>>b) cout<<mul(a,b)<<endl;  
        return 0;  
    }
    View Code
  • 相关阅读:
    rtmp推流
    git 分支操作
    git 当前分支推送的新的仓库地址
    git 修改当前项目的仓库地址,项目迁移,仓库修改
    linux 服务器测试端口连通性
    ffmpeg linux 安装
    rtmp 命令详解
    slf4j和log4j源代码解析以及详解
    聊聊java基础,int值强制类型转换成byte
    应用中并发控制技巧
  • 原文地址:https://www.cnblogs.com/sumjune/p/9759789.html
Copyright © 2011-2022 走看看