zoukankan      html  css  js  c++  java
  • Python多进程原理与实现

    Date: 2019-06-04

    Author: Sun

    1 进程的基本概念

    什么是进程?

    ​ 进程就是一个程序在一个数据集上的一次动态执行过程。进程一般由程序、数据集、进程控制块三部分组成。我们编写的程序用来描述进程要完成哪些功能以及如何完成;数据集则是程序在执行过程中所需要使用的资源;进程控制块用来记录进程的外部特征,描述进程的执行变化过程,系统可以利用它来控制和管理进程,它是系统感知进程存在的唯一标志。

    2 父进程和子进程

    ​ Linux 操作系统提供了一个 fork() 函数用来创建子进程,这个函数很特殊,调用一次,返回两次,因为操作系统是将当前的进程(父进程)复制了一份(子进程),然后分别在父进程和子进程内返回。子进程永远返回0,而父进程返回子进程的 PID。我们可以通过判断返回值是不是 0 来判断当前是在父进程还是子进程中执行。

    ​ Python 中同样提供了 fork() 函数,此函数位于 os 模块下。

    # -*- coding: utf-8 -*-  
    __author__ = 'sun'
    __date__ = '2018/6/04 下午5:17' 
    
    import os
    import time
    
    print("在创建子进程前: pid=%s, ppid=%s" % (os.getpid(), os.getppid()))
    
    pid = os.fork()  #一次调用,两次返回
    if pid == 0:
        print("子进程信息: pid=%s, ppid=%s" % (os.getpid(), os.getppid()))
        time.sleep(5)
    else:
        print("父进程信息: pid=%s, ppid=%s" % (os.getpid(), os.getppid()))
        # pid表示回收的子进程的pid
        #pid, result = os.wait()  # 回收子进程资源  阻塞
        time.sleep(5)
        #print("父进程:回收的子进程pid=%d" % pid)
        #print("父进程:子进程退出时 result=%d" % result)
    
    # 下面的内容会被打印两次,一次是在父进程中,一次是在子进程中。
    # 父进程中拿到的返回值是创建的子进程的pid,大于0
    print("fork创建完后: pid=%s, ppid=%s" % (os.getpid(), os.getppid()))
    
    2.1 父子进程如何区分?

    ​ 子进程是父进程通过fork()产生出来的,pid = os.fork()

    ​ 通过返回值pid是否为0,判断是否为子进程,如果是0,则表示是子进程

    ​ 由于 fork() 是 Linux 上的概念,所以如果要跨平台,最好还是使用 subprocess 模块来创建子进程。

    2.2 子进程如何回收?

    python中采用os.wait()方法用来回收子进程占用的资源

    pid, result = os.wait() # 回收子进程资源  阻塞,等待子进程执行完成回收

    如果有子进程没有被回收的,但是父进程已经死掉了,这个子进程就是僵尸进程。

    3 Python进程模块

    ​ python的进程multiprocessing模块有多种创建进程的方式,每种创建方式和进程资源的回收都不太相同,下面分别针对Process,Pool及系统自带的fork三种进程分析。

    3.1 fork()
    import os
    pid = os.fork() # 创建一个子进程
    os.wait() # 等待子进程结束释放资源
    pid为0的代表子进程。
    

    缺点:
    ​ 1.兼容性差,只能在类linux系统下使用,windows系统不可使用;
    ​ 2.扩展性差,当需要多条进程的时候,进程管理变得很复杂;
    ​ 3.会产生“孤儿”进程和“僵尸”进程,需要手动回收资源。
    优点:
    ​ 是系统自带的接近低层的创建方式,运行效率高。

    3.2 Process进程

    multiprocessing模块提供Process类实现新建进程

    # -*- coding: utf-8 -*-
    import os
    from multiprocessing  import Process
    import time
    
    def fun(name):
    	print("2 子进程信息: pid=%s, ppid=%s" % (os.getpid(), os.getppid()))
    	print("hello " + name)
    
    def test():
    	print('ssss')
    
    if __name__ == "__main__":
    	print("1 主进程信息: pid=%s, ppid=%s" % (os.getpid(), os.getppid()))
    	ps = Process(target=fun, args=('jingsanpang', ))
    	print("111 ##### ps pid: " + str(ps.pid) + ", ident:" + str(ps.ident))
    	print("3 进程信息: pid=%s, ppid=%s" % (os.getpid(), os.getppid()))
    	print(ps.is_alive())
    	ps.start()
    	print(ps.is_alive())
    	print("222 #### ps pid: " + str(ps.pid) + ", ident:" + str(ps.ident))
    	print("4 进程信息: pid=%s, ppid=%s" % (os.getpid(), os.getppid()))
    	ps.join()
    	print(ps.is_alive())
    	print("5 进程信息: pid=%s, ppid=%s" % (os.getpid(), os.getppid()))
    	ps.terminate()
    	print("6 进程信息: pid=%s, ppid=%s" % (os.getpid(), os.getppid()))
    

    特点:
    ​ 1.注意:Process对象可以创建进程,但Process对象不是进程,其删除与否与系统资源是否被回收没有直接的关系。
    2.主进程执行完毕后会默认等待子进程结束后回收资源,不需要手动回收资源;join()函数用来控制子进程
    ​ 结束的顺序,其内部也有一个清除僵尸进程的函数,可以回收资源;
    3.Process进程创建时,子进程会将主进程的Process对象完全复制一份,这样在主进程和子进程各有一个 Process对象,但是p.start()启动的是子进程,主进程中的Process对象作为一个静态对象存在,不执行。

    4.当子进程执行完毕后,会产生一个僵尸进程,其会被join函数回收,或者再有一条进程开启,start函数也会回收僵尸进程,所以不一定需要写join函数。
    5.windows系统在子进程结束后会立即自动清除子进程的Process对象,而linux系统子进程的Process对象如果没有join函数和start函数的话会在主进程结束后统一清除。

    另外还可以通过继承Process对象来重写run方法创建进程

    3.3 进程池POOL (多个进程)

    进程池:为了避免我们多进程创建,销毁带来的开销,引入的进程池

    # -*- coding: utf-8 -*-
    __author__ = 'sun'
    __date__ = '2018/6/04 下午9:16'
    
    import multiprocessing
    import time
    
    def work(msg):
    	mult_proces_name = multiprocessing.current_process().name
    	print('process: ' + mult_proces_name + '-' + msg)
    	
    
    if __name__ == "__main__":
    	pool = multiprocessing.Pool(processes=5) # 创建4个进程
    	for i in range(20):
    		msg = "process %d" %(i)
    		pool.apply_async(work, (msg, ))
    	pool.close() # 关闭进程池,表示不能在往进程池中添加进程
    	pool.join() # 等待进程池中的所有进程执行完毕,必须在close()之后调用
    	print("Sub-process all done.")
    

    ​ 上述代码中的pool.apply_async()apply()函数的变体,apply_async()apply()的并行版本,apply()apply_async()的阻塞版本,使用apply()主进程会被阻塞直到函数执行结束,所以说是阻塞版本。apply()既是Pool的方法,也是Python内置的函数,两者等价。可以看到输出结果并不是按照代码for循环中的顺序输出的。

    多个子进程并返回值

    apply_async()本身就可以返回被进程调用的函数的返回值。上一个创建多个子进程的代码中,如果在函数func中返回一个值,那么pool.apply_async(func, (msg, ))的结果就是返回pool中所有进程的值的对象(注意是对象,不是值本身)

    import multiprocessing
    import time
    
    def func(msg):
        return multiprocessing.current_process().name + '-' + msg
    
    if __name__ == "__main__":
        pool = multiprocessing.Pool(processes=4) # 创建4个进程
        results = []
        for i in range(20):
            msg = "process %d" %(i)
            results.append(pool.apply_async(func, (msg, )))
        pool.close() # 关闭进程池,表示不能再往进程池中添加进程,需要在join之前调用
        pool.join() # 等待进程池中的所有进程执行完毕
        print ("Sub-process(es) done.")
    
        for res in results:
            print (res.get())
    

    ​ 与之前的输出不同,这次的输出是有序的。

    ​ 如果电脑是八核,建立8个进程,在Ubuntu下输入top命令再按下大键盘的1,可以看到每个CPU的使用率是比较平均的

    4 进程间通信方式

    1. 管道pipe:管道是一种半双工的通信方式,数据只能单向流动,而且只能在具有亲缘关系的进程间使用。进程的亲缘关系通常是指父子进程关系。
    2. 命名管道FIFO:有名管道也是半双工的通信方式,但是它允许无亲缘关系进程间的通信。
    3. 消息队列MessageQueue:消息队列是由消息的链表,存放在内核中并由消息队列标识符标识。消息队列克服了信号传递信息少、管道只能承载无格式字节流以及缓冲区大小受限等缺点。
    4. 共享存储SharedMemory:共享内存就是映射一段能被其他进程所访问的内存,这段共享内存由一个进程创建,但多个进程都可以访问。共享内存是最快的 IPC 方式,它是针对其他进程间通信方式运行效率低而专门设计的。它往往与其他通信机制,如信号两,配合使用,来实现进程间的同步和通信。

    以上几种进程间通信方式中,消息队列是使用的比较频繁的方式。

    (1)管道pipe

    import multiprocessing
    
    def foo(sk):
       sk.send('hello father')
       print(sk.recv())
    
    if __name__ == '__main__':
       conn1,conn2=multiprocessing.Pipe()    #开辟两个口,都是能进能出,括号中如果False即单向通信
       p=multiprocessing.Process(target=foo,args=(conn1,))  #子进程使用sock口,调用foo函数
       p.start()
       print(conn2.recv())  #主进程使用conn口接收
       conn2.send('hi son') #主进程使用conn口发送
    

    (2)消息队列Queue

    Queue是多进程的安全队列,可以使用Queue实现多进程之间的数据传递。

    Queue的一些常用方法:

    • Queue.qsize():返回当前队列包含的消息数量;
    • Queue.empty():如果队列为空,返回True,反之False ;
    • Queue.full():如果队列满了,返回True,反之False;
    • Queue.get():获取队列中的一条消息,然后将其从列队中移除,可传参超时时长。
    • Queue.get_nowait():相当Queue.get(False),取不到值时触发异常:Empty;
    • Queue.put():将一个值添加进数列,可传参超时时长。
    • Queue.put_nowait():相当于Queue.get(False),当队列满了时报错:Full。

    案例:

    from multiprocessing import Process, Queue
    import time
    
    def write(q):
       for i in ['A', 'B', 'C', 'D', 'E']:
          print('Put %s to queue' % i)
          q.put(i)
          time.sleep(0.5)
    
    def read(q):
       while True:
          v = q.get(True)
          print('get %s from queue' % v)
    
    
    if __name__ == '__main__':
       q = Queue()
       pw = Process(target=write, args=(q,))
       pr = Process(target=read, args=(q,))
       print('write process = ', pw)
       print('read  process = ', pr)
       pw.start()
       pr.start()
       pw.join()
       pr.join()
       pr.terminate()
       pw.terminate()
    
    

    Queue和pipe只是实现了数据交互,并没实现数据共享,即一个进程去更改另一个进程的数据

    注:进程间通信应该尽量避免使用共享数据的方式

    5 多进程实现生产者消费者

    以下通过多进程实现生产者,消费者模式

    import multiprocessing
    from multiprocessing import Process
    from time import sleep
    import time
    
    
    class MultiProcessProducer(multiprocessing.Process):
       def __init__(self, num, queue):
          """Constructor"""
          multiprocessing.Process.__init__(self)
          self.num = num
          self.queue = queue
    
       def run(self):
          t1 = time.time()
          print('producer start ' + str(self.num))
          for i in range(1000):
             self.queue.put((i, self.num))
          # print 'producer put', i, self.num
          t2 = time.time()
    
          print('producer exit ' + str(self.num))
          use_time = str(t2 - t1)
          print('producer ' + str(self.num) + ', 
          use_time: '+ use_time)
    
    class MultiProcessConsumer(multiprocessing.Process):
       def __init__(self, num, queue):
          """Constructor"""
          multiprocessing.Process.__init__(self)
          self.num = num
          self.queue = queue
    
       def run(self):
          t1 = time.time()
          print('consumer start ' + str(self.num))
          while True:
             d = self.queue.get()
             if d != None:
                # print 'consumer get', d, self.num
                continue
             else:
                break
          t2 = time.time()
          print('consumer exit ' + str(self.num))
          print('consumer ' + str(self.num) + ', use time:' + str(t2 - t1))
    
    def main():
       # create queue
       queue = multiprocessing.Queue()
       # create processes
       producer = []
       for i in range(5):
          producer.append(MultiProcessProducer(i, queue))
    
       consumer = []
       for i in range(5):
          consumer.append(MultiProcessConsumer(i, queue))
    
       # start processes
       for i in range(len(producer)):
          producer[i].start()
    
       for i in range(len(consumer)):
          consumer[i].start()
    
       # wait for processs to exit
       for i in range(len(producer)):
          producer[i].join()
    
       for i in range(len(consumer)):
          queue.put(None)
    
       for i in range(len(consumer)):
          consumer[i].join()
    
       print('all done finish')
    
    
    if __name__ == "__main__":
       main()
    

    6 总结

    ​ python中的多进程创建有以下两种方式:

    (1)fork子进程

    (2)采用 multiprocessing 这个库创建子进程

    ​ 需要注意的是队列中Queue.Queue是线程安全的,但并不是进程安全,所以多进程一般使用线程、进程安全的multiprocessing.Queue()

    ​ 另外, 进程池使用 multiprocessing.Pool实现,pool = multiprocessing.Pool(processes = 3),产生一个进程池,pool.apply_async实现非租塞模式,pool.apply实现阻塞模式。

    apply_async和 apply函数,前者是非阻塞的,后者是阻塞。可以看出运行时间相差的倍数正是进程池数量。

    ​ 同时可以通过result.append(pool.apply_async(func, (msg, )))获取非租塞式调用结果信息的。

  • 相关阅读:
    深入浅出进程与线程的基本概念
    python中with的用法
    浮点型数据在内存中存储的表示
    自问问题列表以及网络答案整理
    看java源代码
    【设计模式】工厂方法
    SQL实现递归及存储过程中 In() 参数传递解决方案
    app与server联系
    添加service到SystemService硬件服务
    noproguard.classes-with-local.dex
  • 原文地址:https://www.cnblogs.com/sunBinary/p/10976920.html
Copyright © 2011-2022 走看看