zoukankan      html  css  js  c++  java
  • 《设计模式之美》

    经典的设计模式有23 种,分三种类型:创建型、结构型和行为型。其中,创建型设计模式主要解决“对象的创建”问题,结构型设计模式主要解决“类或对象的组合”问题,行为型设计模式主要解决“类或对象之间的交互”问题。虽然专栏中讲到的设计模式有很多种,但常用的并不多,主要有:单例、工厂、建造者、代理、装饰器、适配器、观察者、模板、策略、职责链、迭代器这 11 种,所以,你只要集中精力,把这 11 种搞明白就可以了,剩下的那 12 种稍微了解,混个眼熟,等到真正用到的时候,再深入地去研究学习就可以了。

    41篇 - 单例模式

    单例设计模式(Singleton Design Pattern)理解起来非常简单。一个类只允许创建一个对象(或者实例),那这个类就是一个单例类,这种设计模式就叫作单例设计模式,简称单例模式。

    从业务概念上,有些数据在系统中只应该保存一份,就比较适合设计为单例类。比如,系统的配置信息类。除此之外,我们还可以使用单例解决资源访问冲突的问题。

    概括起来,要实现一个单例,我们需要关注的点无外乎下面几个:构造函数需要是 private 访问权限的,这样才能避免外部通过 new 创建实例;考虑对象创建时的线程安全问题;考虑是否支持延迟加载;考虑 getInstance() 性能是否高(是否加锁)。

    1. 静态内部类实现单例

    public class IdGenerator { 
      private AtomicLong id = new AtomicLong(0);
      private IdGenerator() {}
    
      private static class SingletonHolder{
        private static final IdGenerator instance = new IdGenerator();
      }
      
      public static IdGenerator getInstance() {
        return SingletonHolder.instance;
      }
     
      public long getId() { 
        return id.incrementAndGet();
      }
    }
    

    ingletonHolder 是一个静态内部类,当外部类 IdGenerator 被加载的时候,并不会创建 SingletonHolder 实例对象。只有当调用 getInstance() 方法时,SingletonHolder 才会被加载,这个时候才会创建 instance。instance 的唯一性、创建过程的线程安全性,都由 JVM 来保证。所以,这种实现方法既保证了线程安全,又能做到延迟加载。

    2. 最简单的实现方式:基于枚举类型的单例实现。

    这种实现方式通过 Java 枚举类型本身的特性,保证了实例创建的线程安全性和实例的唯一性。具体的代码如下所示:

    public enum IdGenerator {
      INSTANCE;
      private AtomicLong id = new AtomicLong(0);
     
      public long getId() { 
        return id.incrementAndGet();
      }
    }
    

    44篇 工厂模式

    一般情况下,工厂模式分为三种更加细分的类型:简单工厂、工厂方法和抽象工厂。抽象工厂的应用场景比较特殊,没有前两种常用。

     简单工厂

    public class RuleConfigSource {
      public RuleConfig load(String ruleConfigFilePath) {
        String ruleConfigFileExtension = getFileExtension(ruleConfigFilePath);
        IRuleConfigParser parser = RuleConfigParserFactory.createParser(ruleConfigFileExtension);
        if (parser == null) {
          throw new InvalidRuleConfigException(
                  "Rule config file format is not supported: " + ruleConfigFilePath);
        }
    
        String configText = "";
        //从ruleConfigFilePath文件中读取配置文本到configText中
        RuleConfig ruleConfig = parser.parse(configText);
        return ruleConfig;
      }
    
      private String getFileExtension(String filePath) {
        //...解析文件名获取扩展名,比如rule.json,返回json
        return "json";
      }
    }
    
    public class RuleConfigParserFactory {
      public static IRuleConfigParser createParser(String configFormat) {
        IRuleConfigParser parser = null;
        if ("json".equalsIgnoreCase(configFormat)) {
          parser = new JsonRuleConfigParser();
        } else if ("xml".equalsIgnoreCase(configFormat)) {
          parser = new XmlRuleConfigParser();
        } else if ("yaml".equalsIgnoreCase(configFormat)) {
          parser = new YamlRuleConfigParser();
        } else if ("properties".equalsIgnoreCase(configFormat)) {
          parser = new PropertiesRuleConfigParser();
        }
        return parser;
      }
    }
    

    大部分工厂类都是以“Factory”这个单词结尾的,但也不是必须的,比如 Java 中的 DateFormat、Calender。除此之外,工厂类中创建对象的方法一般都是 create 开头,比如代码中的 createParser(),但有的也命名为 getInstance()、createInstance()、newInstance(),有的甚至命名为 valueOf()(比如 Java String 类的 valueOf() 函数)等等,这个我们根据具体的场景和习惯来命名就好。在上面的代码实现中,我们每次调用 RuleConfigParserFactory 的 createParser() 的时候,都要创建一个新的 parser。实际上,如果 parser 可以复用,为了节省内存和对象创建的时间,我们可以将 parser 事先创建好缓存起来。当调用 createParser() 函数的时候,我们从缓存中取出 parser 对象直接使用。这有点类似单例模式和简单工厂模式的结合,具体的代码实现如下所示。在接下来的讲解中,我们把上一种实现方法叫作简单工厂模式的第一种实现方法,把下面这种实现方法叫作简单工厂模式的第二种实现方法。

    public class RuleConfigParserFactory {
      private static final Map<String, RuleConfigParser> cachedParsers = new HashMap<>();
    
      static {
        cachedParsers.put("json", new JsonRuleConfigParser());
        cachedParsers.put("xml", new XmlRuleConfigParser());
        cachedParsers.put("yaml", new YamlRuleConfigParser());
        cachedParsers.put("properties", new PropertiesRuleConfigParser());
      }
    
      public static IRuleConfigParser createParser(String configFormat) {
        if (configFormat == null || configFormat.isEmpty()) {
          return null;//返回null还是IllegalArgumentException全凭你自己说了算
        }
        IRuleConfigParser parser = cachedParsers.get(configFormat.toLowerCase());
        return parser;
      }
    }
    

    对于上面两种简单工厂模式的实现方法,如果我们要添加新的 parser,那势必要改动到 RuleConfigParserFactory 的代码,那这是不是违反开闭原则呢?实际上,如果不是需要频繁地添加新的 parser,只是偶尔修改一下 RuleConfigParserFactory 代码,稍微不符合开闭原则,也是完全可以接受的。另外,在 RuleConfigParserFactory 的第一种代码实现中,有一组 if 分支判断逻辑,是不是应该用多态或其他设计模式来替代呢?实际上,如果 if 分支并不是很多,代码中有 if 分支也是完全可以接受的。应用多态或设计模式来替代 if 分支判断逻辑,也并不是没有任何缺点的,它虽然提高了代码的扩展性,更加符合开闭原则,但也增加了类的个数,牺牲了代码的可读性。

    总结一下,尽管简单工厂模式的代码实现中,有多处 if 分支判断逻辑,违背开闭原则,但权衡扩展性和可读性,这样的代码实现在大多数情况下(比如,不需要频繁地添加 parser,也没有太多的 parser)是没有问题的。

    工厂方法(Factory Method)

    public interface IRuleConfigParserFactory {
      IRuleConfigParser createParser();
    }
    
    public class JsonRuleConfigParserFactory implements IRuleConfigParserFactory {
      @Override
      public IRuleConfigParser createParser() {
        return new JsonRuleConfigParser();
      }
    }
    
    public class XmlRuleConfigParserFactory implements IRuleConfigParserFactory {
      @Override
      public IRuleConfigParser createParser() {
        return new XmlRuleConfigParser();
      }
    }
    
    public class YamlRuleConfigParserFactory implements IRuleConfigParserFactory {
      @Override
      public IRuleConfigParser createParser() {
        return new YamlRuleConfigParser();
      }
    }
    
    public class PropertiesRuleConfigParserFactory implements IRuleConfigParserFactory {
      @Override
      public IRuleConfigParser createParser() {
        return new PropertiesRuleConfigParser();
      }
    }
    
    
    public class RuleConfigSource {
      public RuleConfig load(String ruleConfigFilePath) {
        String ruleConfigFileExtension = getFileExtension(ruleConfigFilePath);
    
        IRuleConfigParserFactory parserFactory = RuleConfigParserFactoryMap.getParserFactory(ruleConfigFileExtension);
        if (parserFactory == null) {
          throw new InvalidRuleConfigException("Rule config file format is not supported: " + ruleConfigFilePath);
        }
        IRuleConfigParser parser = parserFactory.createParser();
    
        String configText = "";
        //从ruleConfigFilePath文件中读取配置文本到configText中
        RuleConfig ruleConfig = parser.parse(configText);
        return ruleConfig;
      }
    
      private String getFileExtension(String filePath) {
        //...解析文件名获取扩展名,比如rule.json,返回json
        return "json";
      }
    }
    
    //因为工厂类只包含方法,不包含成员变量,完全可以复用,
    //不需要每次都创建新的工厂类对象,所以,简单工厂模式的第二种实现思路更加合适。
    public class RuleConfigParserFactoryMap { //工厂的工厂
      private static final Map<String, IRuleConfigParserFactory> cachedFactories = new HashMap<>();
    
      static {
        cachedFactories.put("json", new JsonRuleConfigParserFactory());
        cachedFactories.put("xml", new XmlRuleConfigParserFactory());
        cachedFactories.put("yaml", new YamlRuleConfigParserFactory());
        cachedFactories.put("properties", new PropertiesRuleConfigParserFactory());
      }
    
      public static IRuleConfigParserFactory getParserFactory(String type) {
        if (type == null || type.isEmpty()) {
          return null;
        }
        IRuleConfigParserFactory parserFactory = cachedFactories.get(type.toLowerCase());
        return parserFactory;
      }
    }
    

    当我们需要添加新的规则配置解析器的时候,我们只需要创建新的 parser 类和 parser factory 类,并且在 RuleConfigParserFactoryMap 类中,将新的 parser factory 对象添加到 cachedFactories 中即可。代码的改动非常少,基本上符合开闭原则。

    什么时候该用工厂方法模式,而非简单工厂模式呢?我们前面提到,之所以将某个代码块剥离出来,独立为函数或者类,原因是这个代码块的逻辑过于复杂,剥离之后能让代码更加清晰,更加可读、可维护。但是,如果代码块本身并不复杂,就几行代码而已,我们完全没必要将它拆分成单独的函数或者类。基于这个设计思想,当对象的创建逻辑比较复杂,不只是简单的 new 一下就可以,而是要组合其他类对象,做各种初始化操作的时候,我们推荐使用工厂方法模式,将复杂的创建逻辑拆分到多个工厂类中,让每个工厂类都不至于过于复杂。而使用简单工厂模式,将所有的创建逻辑都放到一个工厂类中,会导致这个工厂类变得很复杂。除此之外,在某些场景下,如果对象不可复用,那工厂类每次都要返回不同的对象。如果我们使用简单工厂模式来实现,就只能选择第一种包含 if 分支逻辑的实现方式。如果我们还想避免烦人的 if-else 分支逻辑,这个时候,我们就推荐使用工厂方法模式。

    当创建逻辑比较复杂,是一个“大工程”的时候,我们就考虑使用工厂模式,封装对象的创建过程,将对象的创建和使用相分离。何为创建逻辑比较复杂呢?我总结了下面两种情况。第一种情况:类似规则配置解析的例子,代码中存在 if-else 分支判断,动态地根据不同的类型创建不同的对象。针对这种情况,我们就考虑使用工厂模式,将这一大坨 if-else 创建对象的代码抽离出来,放到工厂类中。还有一种情况,尽管我们不需要根据不同的类型创建不同的对象,但是,单个对象本身的创建过程比较复杂,比如前面提到的要组合其他类对象,做各种初始化操作。在这种情况下,我们也可以考虑使用工厂模式,将对象的创建过程封装到工厂类中。

    对于第一种情况,当每个对象的创建逻辑都比较简单的时候,我推荐使用简单工厂模式,将多个对象的创建逻辑放到一个工厂类中。当每个对象的创建逻辑都比较复杂的时候,为了避免设计一个过于庞大的简单工厂类,我推荐使用工厂方法模式,将创建逻辑拆分得更细,每个对象的创建逻辑独立到各自的工厂类中。同理,对于第二种情况,因为单个对象本身的创建逻辑就比较复杂,所以,我建议使用工厂方法模式。

    除了刚刚提到的这几种情况之外,如果创建对象的逻辑并不复杂,那我们就直接通过 new 来创建对象就可以了,不需要使用工厂模式。现在,我们上升一个思维层面来看工厂模式,它的作用无外乎下面这四个。这也是判断要不要使用工厂模式的最本质的参考标准。

    • 封装变化:创建逻辑有可能变化,封装成工厂类之后,创建逻辑的变更对调用者透明。
    • 代码复用:创建代码抽离到独立的工厂类之后可以复用。
    • 隔离复杂性:封装复杂的创建逻辑,调用者无需了解如何创建对象。
    • 控制复杂度:将创建代码抽离出来,让原本的函数或类职责更单一,代码更简洁。

    45篇  工厂模式(下):如何设计实现一个Dependency Injection框架?(重点)

    工厂模式和 DI 容器有何区别?实际上,DI 容器底层最基本的设计思路就是基于工厂模式的。DI 容器相当于一个大的工厂类,负责在程序启动的时候,根据配置(要创建哪些类对象,每个类对象的创建需要依赖哪些其他类对象)事先创建好对象。当应用程序需要使用某个类对象的时候,直接从容器中获取即可。正是因为它持有一堆对象,所以这个框架才被称为“容器”。DI 容器相对于我们上节课讲的工厂模式的例子来说,它处理的是更大的对象创建工程。上节课讲的工厂模式中,一个工厂类只负责某个类对象或者某一组相关类对象(继承自同一抽象类或者接口的子类)的创建,而 DI 容器负责的是整个应用中所有类对象的创建。除此之外,DI 容器负责的事情要比单纯的工厂模式要多。比如,它还包括配置的解析、对象生命周期的管理。

    总结一下,一个简单的 DI 容器的核心功能一般有三个:配置解析、对象创建和对象生命周期管理。其核心逻辑主要包括:配置文件解析,以及根据配置文件通过“反射”语法来创建对象。其中,创建对象的过程就应用到了我们在学的工厂模式。对象创建、组装、管理完全有 DI 容器来负责,跟具体业务代码解耦,让程序员聚焦在业务代码的开发上。

  • 相关阅读:
    excel多个工作表数据快速合并到一个工作表方法
    客商申请单客商编码自动编码
    如何实现Excel多人共享与协作
    商家推销技巧-将广告做成实用信息
    如何实现扫码填报信息
    DBSync如何连接并同步MySQL
    如何在微信中发布动态信息
    一款数据库比较与同步软件的设计与实现
    【原创】在 ASP.NET Core 3.1 中使用 Senparc.Weixin.Work 企业微信 SDK —— 发送文本消息
    【原创】在 .NET Core 3.1 中使用 Senparc.Weixin.Work 企业微信 SDK —— 发送文本消息
  • 原文地址:https://www.cnblogs.com/sunada2005/p/14344599.html
Copyright © 2011-2022 走看看