zoukankan      html  css  js  c++  java
  • 【动态规划】Part1

    1. 硬币找零

    题目描述:假设有几种硬币,如1、3、5,并且数量无限。请找出能够组成某个数目的找零所使用最少的硬币数。

    分析:   dp [0] = 0
               dp [1] = 1 + dp [1-1]
               dp [2] = 1 + dp [2-1]
               dp [3] = min (dp [3 - 1] + 1, dp [3 - 3] + 1)

     1 #include<iostream>
     2 #include<algorithm>
     3 #define INF 32767
     4 using namespace std;
     5 
     6 int dp[100];
     7 int coin[3] = { 1, 2, 3 };
     8 
     9 int main()
    10 {
    11     int sum;
    12     cin >> sum;
    13     dp[0] = 0;
    14     for (int i = 1; i <= 100; ++i)
    15         dp[i] = INF;
    16     for (int i = 1; i <= sum; ++i)
    17         for (int j = 0; j <= 2; ++j)
    18             if (coin[j] <= i)
    19                 dp[i] = min(dp[i], dp[i - coin[j]] + 1);
    20     cout << dp[sum] << endl;
    21     return 0;
    22 }

    2. 最长递增子序列

    • 题目描述:最长递增子序列(Longest Increasing Subsequence)是指找到一个给定序列的最长子序列的长度,使得子序列中的所有元素单调递增。

    给定一个序列,求解它的最长 递增 子序列 的长度。比如: arr[] = {3,1,4,1,5,9,2,6,5}   的最长递增子序列长度为4。即为:1,4,5,9

     1 #include<iostream>
     2 #include<algorithm>
     3 using namespace std;
     4 
     5 int arr[9] = { 3, 1, 4, 1, 5, 9, 2, 6, 5 };
     6 int dp[9];
     7 
     8 int main()
     9 {
    10     for (int i = 0; i < 9; ++i)
    11         dp[i] = 1;
    12     for (int i = 1; i < 9; ++i)
    13         for (int j = 0; j < i; ++j)
    14             if (arr[i] > arr[j])
    15                 dp[i] = max(dp[i], dp[j] + 1);
    16     int mi = 0;
    17     for (int i = 0; i < 6; ++i)
    18         mi = max(mi, dp[i]);
    19     cout << mi << endl;
    20     return 0;
    21 }

    3. 数字三角形

    Problem description
    7
    
    3 8
    8 1 0
    2 7 4 4
    4 5 2 6 5

    (Figure 1)

    Figure 1 shows a number triangle. Write a program that calculates the highest sum of numbers passed on a route that starts at the top and ends somewhere on the base. Each step can go either diagonally down to the left or diagonally down to the right.


    Input
    Your program is to read from standard input. The first line contains one integer T, the number of test cases, for each test case: the first line contain a integer N: the number of rows in the triangle. The following N lines describe the data of the triangle. The number of rows in the triangle is > 1 but <= 100. The numbers in the triangle, all integers, are between 0 and 99. 

    Output
    Your program is to write to standard output. The highest sum is written as an integer for each test case one line.

    Sample Input
    1
    
    5
    7
    3 8
    8 1 0 
    2 7 4 4
    4 5 2 6 5
    Sample Output
    30
    Problem Source
    IOI 1994

    代码:

     1 #include<iostream>
     2 #include<algorithm>
     3 using namespace std;
     4 
     5 int dp[100][100];
     6 int arr[100][100];
     7 
     8 int main()
     9 {
    10     int N;
    11     cin >> N;
    12     if (N == 1)
    13         cout << N;
    14     for (int i = 0; i < N; ++i)
    15         for (int j = 0; j <= i; ++j)
    16             cin >> arr[i][j];
    17     for (int i = 0; i < N; ++i)
    18         dp[N - 1][i] = arr[N - 1][i];
    19     for (int i = N - 2; i >= 0; --i)
    20         for (int j = 0; j <= i; ++j)
    21             dp[i][j] = max(arr[i][j] + dp[i + 1][j], arr[i][j] + dp[i + 1][j + 1]);
    22     cout << dp[0][0] << endl;
    23     return 0;
    24 }

     4. 最大最大连续子序列和/积

    • 求取数组中最大连续子序列和,例如给定数组为A={1, 3, -2, 4, -5}, 则最大连续子序列和为6,即1+3+(-2)+ 4 = 6。

    • 求取数组中最大连续子序列积。

    参考资料

    常见动态规划问题分析与求解
    • 关于序列的面试题2------------最大连续子序列和以及积

     

  • 相关阅读:
    Confluence 6 删除垃圾内容
    Confluence 6 在 Apache 或者系统级别阻止垃圾
    Confluence 6 避免和清理垃圾
    Confluence 6 配置 简易信息聚合(RSS)
    Confluence 6 匿名访问远程 API
    Confluence 6 使用电子邮件可见
    Confluence 6 配置 XSRF 保护
    Confluence 6 为登录失败编辑,禁用和配置验证码
    Confluence 6 为登录失败配置使用验证码
    Confluence 6 为搜索引擎隐藏外部链接
  • 原文地址:https://www.cnblogs.com/sunbines/p/9011149.html
Copyright © 2011-2022 走看看