题目链接: (bzoj) https://www.lydsy.com/JudgeOnline/problem.php?id=3143
(luogu) https://www.luogu.org/problemnew/show/P3232
题解: 水题。考虑如何求每个点的期望经过次数: 要求(1)号点开始(n)号点结束,那么(1)号点一定一上来就会经过一次,(n)号点一共只会经过(1)次。因此对于(1)到(n-1)的每一个点可以列出一个方程,其中(1)号点的方程是(f[1]=sum_{edge(u,1),1le ule n-1} frac{f[u]}{du[u]}+1) ((du)为度数), 其余点(v)的方程是(f[v]=sum_{edge(u,v),1le ule n-1} frac{f[u]}{du[u]}). 这个方程组有((n-1))个未知数((n-1))个方程,解出来即可。(n)号点怎么办?如果列出来其实应该是(f[n]=sum_{edge(u,n)} frac{f[u]}{du[u]}=1), 但是发现这个方程等价于前((n-1))个方程加起来,所以就不用管了。
我们得到了每个点的期望经过次数,然后就可以轻易得到每条边期望经过次数,对于边((u,v))其期望经过次数为(frac{f[u]}{du[u]}+frac{f[v]}{du[v]}), 其中(f[n])视为(0). 根据期望的线性性,总得分期望就等于每条边期望经过次数乘以边权再求和,所以根据排序不等式给期望次数越小的边安排越大的边权即可。
时间复杂度(O(n^3+mlog m)).
代码
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cassert>
#include<iostream>
#include<algorithm>
using namespace std;
inline int read()
{
int x=0; bool f=1; char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=0;
for(; isdigit(c);c=getchar()) x=(x<<3)+(x<<1)+(c^'0');
if(f) return x;
return -x;
}
const int N = 500;
namespace Gauss
{
double a[N+3][N+3],b[N+3],sol[N+3];
void gauss(int n)
{
for(int i=1; i<=n; i++)
{
if(a[i][i]==0)
{
bool found = false;
for(int j=i+1; j<=n; j++)
{
if(a[i][j]!=0)
{
for(int k=i; k<=n; k++) swap(a[i][k],a[j][k]);
swap(b[j],b[i]);
found = true; break;
}
}
if(!found) continue;
}
for(int j=i+1; j<=n; j++)
{
if(a[j][i]!=0)
{
double coe = -a[j][i]/a[i][i];
for(int k=i; k<=n; k++) {a[j][k] += coe*a[i][k];}
b[j] += coe*b[i];
}
}
}
for(int i=n; i>=1; i--)
{
for(int j=i+1; j<=n; j++)
{
b[i] -= a[i][j]*sol[j];
}
sol[i] = b[i]/a[i][i];
}
}
}
struct AEdge
{
int u,v;
} e[N*N+3];
int du[N+3];
double f[N+3];
double coe[N*N+3];
int permu[N*N+3];
int n,m,en;
bool cmp(int x,int y) {return coe[x]>coe[y];}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1; i<=m; i++)
{
scanf("%d%d",&e[i].u,&e[i].v);
du[e[i].u]++; du[e[i].v]++;
}
for(int i=1; i<n; i++) Gauss::a[i][i] = -1.0;
for(int i=1; i<=m; i++)
{
int u = e[i].u,v = e[i].v;
if(u==n || v==n) continue;
Gauss::a[u][v] += 1.0/du[v]; Gauss::a[v][u] += 1.0/du[u];
}
Gauss::b[1] = -1.0;
Gauss::gauss(n-1);
for(int i=1; i<n; i++) f[i] = Gauss::sol[i];
for(int i=1; i<=m; i++)
{
int u = e[i].u,v = e[i].v;
coe[i] = f[u]/du[u]+f[v]/du[v];
}
for(int i=1; i<=m; i++) permu[i] = i;
sort(permu+1,permu+m+1,cmp);
double ans = 0.0;
for(int i=1; i<=m; i++) {ans += coe[permu[i]]*i;}
printf("%.3lf
",ans);
return 0;
}