| Problem description |
|
A graph consists of a set of vertices and edges between pairs of vertices. Two vertices are connected if there is a path (subset of edges) leading from one vertex to another, and a connected component is a maximal subset of vertices that are all connected to each other. A graph consists of one or more connected components. A tree is a connected component without cycles, but it can also be characterized in other ways. For example, a tree consisting of n vertices has exactly n-1 edges. Also, there is a unique path connecting any pair of vertices in a tree. Given a graph, report the number of connected components that are also trees. |
| Input |
|
The input consists of a number of cases. Each case starts with two non-negative integers n and m, satisfying n ≤ 500 and m ≤ n(n-1)/2. This is followed by m lines, each containing two integers specifying the two distinct vertices connected by an edge. No edge will be specified twice (or given again in a different order). The vertices are labelled 1 to n. The end of input is indicated by a line containing n = m = 0. |
| Output |
|
For each case, print one of the following lines depending on how many different connected components are trees (T > 1 below): Case x: A forest of T trees.
Case x: There is one tree.
Case x: No trees.
x is the case number (starting from 1). |
| Sample Input |
6 3 1 2 2 3 3 4 6 5 1 2 2 3 3 4 4 5 5 6 6 6 1 2 2 3 1 3 4 5 5 6 6 4 0 0 |
| Sample Output |
Case 1: A forest of 3 trees. Case 2: There is one tree. Case 3: No trees. #include<stdio.h>
int fath[505],cycl[505],k,n;
void setfirst()
{
k=n;
for(int i=1;i<=n;i++)
{
fath[i]=i; cycl[i]=0;
}
}
int find_fath(int x)
{
if(x!=fath[x])
fath[x]=find_fath(fath[x]);
return fath[x];
}
void setTree(int a,int b)
{
a=find_fath(a);
b=find_fath(b);
if(cycl[b]&&cycl[a])
return ;
k--;
if(a!=b)
{
if(cycl[a])
fath[b]=a;
else
fath[a]=b;
}
else
cycl[a]=1;
}
int main()
{
int a,b,m,t=1;
while(scanf("%d%d",&n,&m)>0&&m+n!=0)
{
setfirst();
while(m--)
{
scanf("%d%d",&a,&b);
setTree(a,b);
}
printf("Case %d: ",t++);
if(k>1)printf("A forest of %d trees.
",k);
if(k==1)printf("There is one tree.
");
if(k==0)printf("No trees.
");
}
}
|