zoukankan      html  css  js  c++  java
  • 进程间通信

    进程间通信(IPC)介绍

     

    进程间通信(IPC,InterProcess Communication)是指在不同进程之间传播或交换信息。

    IPC的方式通常有管道(包括无名管道和命名管道)、消息队列、信号量、共享存储、Socket、Streams等。其中 Socket和Streams支持不同主机上的两个进程IPC。

    以Linux中的C语言编程为例。

    一、管道

    管道,通常指无名管道,是 UNIX 系统IPC最古老的形式。

    1、特点:

    1. 它是半双工的(即数据只能在一个方向上流动),具有固定的读端和写端。

    2. 它只能用于具有亲缘关系的进程之间的通信(也是父子进程或者兄弟进程之间)。

    3. 它可以看成是一种特殊的文件,对于它的读写也可以使用普通的read、write 等函数。但是它不是普通的文件,并不属于其他任何文件系统,并且只存在于内存中。

    一、管道

    管道,通常指无名管道,是 UNIX 系统IPC最古老的形式。

    1、特点:

    1. 它是半双工的(即数据只能在一个方向上流动),具有固定的读端和写端。

    2. 它只能用于具有亲缘关系的进程之间的通信(也是父子进程或者兄弟进程之间)。

    3. 它可以看成是一种特殊的文件,对于它的读写也可以使用普通的read、write 等函数。但是它不是普通的文件,并不属于其他任何文件系统,并且只存在于内存中。

    2、原型:

    1 #include <unistd.h>
    2 int pipe(int fd[2]);    // 返回值:若成功返回0,失败返回-1

    当一个管道建立时,它会创建两个文件描述符:fd[0]为读而打开,fd[1]为写而打开。如下图:

    要关闭管道只需将这两个文件描述符关闭即可。

    3、例子

    单个进程中的管道几乎没有任何用处。所以,通常调用 pipe 的进程接着调用 fork,这样就创建了父进程与子进程之间的 IPC 通道。如下图所示:

    若要数据流从父进程流向子进程,则关闭父进程的读端(fd[0])与子进程的写端(fd[1]);反之,则可以使数据流从子进程流向父进程。

    复制代码
     1 #include<stdio.h>
     2 #include<unistd.h>
     3 
     4 int main()
     5 {
     6     int fd[2];  // 两个文件描述符
     7     pid_t pid;
     8     char buff[20];
     9 
    10     if(pipe(fd) < 0)  // 创建管道
    11         printf("Create Pipe Error!
    ");
    12 
    13     if((pid = fork()) < 0)  // 创建子进程
    14         printf("Fork Error!
    ");
    15     else if(pid > 0)  // 父进程
    16     {
    17         close(fd[0]); // 关闭读端
    18         write(fd[1], "hello world
    ", 12);
    19     }
    20     else
    21     {
    22         close(fd[1]); // 关闭写端
    23         read(fd[0], buff, 20);
    24         printf("%s", buff);
    25     }
    26 
    27     return 0;
    28 }
    复制代码

    二、FIFO

    FIFO,也称为命名管道,它是一种文件类型。

    1、特点

    1. FIFO可以在无关的进程之间交换数据,与无名管道不同。

    2. FIFO有路径名与之相关联,它以一种特殊设备文件形式存在于文件系统中。

    2、原型

    1 #include <sys/stat.h>
    2 // 返回值:成功返回0,出错返回-1
    3 int mkfifo(const char *pathname, mode_t mode);

    其中的 mode 参数与open函数中的 mode 相同。一旦创建了一个 FIFO,就可以用一般的文件I/O函数操作它。

    当 open 一个FIFO时,是否设置非阻塞标志(O_NONBLOCK)的区别:

    • 若没有指定O_NONBLOCK(默认),只读 open 要阻塞到某个其他进程为写而打开此 FIFO。类似的,只写 open 要阻塞到某个其他进程为读而打开它。

    • 若指定了O_NONBLOCK,则只读 open 立即返回。而只写 open 将出错返回 -1 如果没有进程已经为读而打开该 FIFO,其errno置ENXIO。

    3、例子

    FIFO的通信方式类似于在进程中使用文件来传输数据,只不过FIFO类型文件同时具有管道的特性。在数据读出时,FIFO管道中同时清除数据,并且“先进先出”。下面的例子演示了使用 FIFO 进行 IPC 的过程:

    write_fifo.c

    复制代码
     1 #include<stdio.h>
     2 #include<stdlib.h>   // exit
     3 #include<fcntl.h>    // O_WRONLY
     4 #include<sys/stat.h>
     5 #include<time.h>     // time
     6 
     7 int main()
     8 {
     9     int fd;
    10     int n, i;
    11     char buf[1024];
    12     time_t tp;
    13 
    14     printf("I am %d process.
    ", getpid()); // 说明进程ID
    15     
    16     if((fd = open("fifo1", O_WRONLY)) < 0) // 以写打开一个FIFO 
    17     {
    18         perror("Open FIFO Failed");
    19         exit(1);
    20     }
    21 
    22     for(i=0; i<10; ++i)
    23     {
    24         time(&tp);  // 取系统当前时间
    25         n=sprintf(buf,"Process %d's time is %s",getpid(),ctime(&tp));
    26         printf("Send message: %s", buf); // 打印
    27         if(write(fd, buf, n+1) < 0)  // 写入到FIFO中
    28         {
    29             perror("Write FIFO Failed");
    30             close(fd);
    31             exit(1);
    32         }
    33         sleep(1);  // 休眠1秒
    34     }
    35 
    36     close(fd);  // 关闭FIFO文件
    37     return 0;
    38 }
    复制代码

    read_fifo.c

    复制代码
     1 #include<stdio.h>
     2 #include<stdlib.h>
     3 #include<errno.h>
     4 #include<fcntl.h>
     5 #include<sys/stat.h>
     6 
     7 int main()
     8 {
     9     int fd;
    10     int len;
    11     char buf[1024];
    12 
    13     if(mkfifo("fifo1", 0666) < 0 && errno!=EEXIST) // 创建FIFO管道
    14         perror("Create FIFO Failed");
    15 
    16     if((fd = open("fifo1", O_RDONLY)) < 0)  // 以读打开FIFO
    17     {
    18         perror("Open FIFO Failed");
    19         exit(1);
    20     }
    21     
    22     while((len = read(fd, buf, 1024)) > 0) // 读取FIFO管道
    23         printf("Read message: %s", buf);
    24 
    25     close(fd);  // 关闭FIFO文件
    26     return 0;
    27 }
    复制代码

    在两个终端里用 gcc 分别编译运行上面两个文件,可以看到输出结果如下:

    复制代码
     1 [cheesezh@localhost]$ ./write_fifo 
     2 I am 5954 process.
     3 Send message: Process 5954's time is Mon Apr 20 12:37:28 2015
     4 Send message: Process 5954's time is Mon Apr 20 12:37:29 2015
     5 Send message: Process 5954's time is Mon Apr 20 12:37:30 2015
     6 Send message: Process 5954's time is Mon Apr 20 12:37:31 2015
     7 Send message: Process 5954's time is Mon Apr 20 12:37:32 2015
     8 Send message: Process 5954's time is Mon Apr 20 12:37:33 2015
     9 Send message: Process 5954's time is Mon Apr 20 12:37:34 2015
    10 Send message: Process 5954's time is Mon Apr 20 12:37:35 2015
    11 Send message: Process 5954's time is Mon Apr 20 12:37:36 2015
    12 Send message: Process 5954's time is Mon Apr 20 12:37:37 2015
    复制代码
    复制代码
     1 [cheesezh@localhost]$ ./read_fifo 
     2 Read message: Process 5954's time is Mon Apr 20 12:37:28 2015
     3 Read message: Process 5954's time is Mon Apr 20 12:37:29 2015
     4 Read message: Process 5954's time is Mon Apr 20 12:37:30 2015
     5 Read message: Process 5954's time is Mon Apr 20 12:37:31 2015
     6 Read message: Process 5954's time is Mon Apr 20 12:37:32 2015
     7 Read message: Process 5954's time is Mon Apr 20 12:37:33 2015
     8 Read message: Process 5954's time is Mon Apr 20 12:37:34 2015
     9 Read message: Process 5954's time is Mon Apr 20 12:37:35 2015
    10 Read message: Process 5954's time is Mon Apr 20 12:37:36 2015
    11 Read message: Process 5954's time is Mon Apr 20 12:37:37 2015
    复制代码

    上述例子可以扩展成 客户进程—服务器进程 通信的实例,write_fifo的作用类似于客户端,可以打开多个客户端向一个服务器发送请求信息,read_fifo类似于服务器,它适时监控着FIFO的读端,当有数据时,读出并进行处理,但是有一个关键的问题是,每一个客户端必须预先知道服务器提供的FIFO接口,下图显示了这种安排:

    三、消息队列

    消息队列,是消息的链接表,存放在内核中。一个消息队列由一个标识符(即队列ID)来标识。

    1、特点

    1. 消息队列是面向记录的,其中的消息具有特定的格式以及特定的优先级。

    2. 消息队列独立于发送与接收进程。进程终止时,消息队列及其内容并不会被删除。

    3. 消息队列可以实现消息的随机查询,消息不一定要以先进先出的次序读取,也可以按消息的类型读取。

    2、原型

    复制代码
    1 #include <sys/msg.h>
    2 // 创建或打开消息队列:成功返回队列ID,失败返回-1
    3 int msgget(key_t key, int flag);
    4 // 添加消息:成功返回0,失败返回-1
    5 int msgsnd(int msqid, const void *ptr, size_t size, int flag);
    6 // 读取消息:成功返回消息数据的长度,失败返回-1
    7 int msgrcv(int msqid, void *ptr, size_t size, long type,int flag);
    8 // 控制消息队列:成功返回0,失败返回-1
    9 int msgctl(int msqid, int cmd, struct msqid_ds *buf);
    复制代码

    在以下两种情况下,msgget将创建一个新的消息队列:

    • 如果没有与键值key相对应的消息队列,并且flag中包含了IPC_CREAT标志位。
    • key参数为IPC_PRIVATE

    函数msgrcv在读取消息队列时,type参数有下面几种情况:

    • type == 0,返回队列中的第一个消息;
    • type > 0,返回队列中消息类型为 type 的第一个消息;
    • type < 0,返回队列中消息类型值小于或等于 type 绝对值的消息,如果有多个,则取类型值最小的消息。

    可以看出,type值非 0 时用于以非先进先出次序读消息。也可以把 type 看做优先级的权值。(其他的参数解释,请自行Google之)

    3、例子

    下面写了一个简单的使用消息队列进行IPC的例子,服务端程序一直在等待特定类型的消息,当收到该类型的消息以后,发送另一种特定类型的消息作为反馈,客户端读取该反馈并打印出来。

    msg_server.c

    复制代码
     1 #include <stdio.h>
     2 #include <stdlib.h>
     3 #include <sys/msg.h>
     4 
     5 // 用于创建一个唯一的key
     6 #define MSG_FILE "/etc/passwd"
     7 
     8 // 消息结构
     9 struct msg_form {
    10     long mtype;
    11     char mtext[256];
    12 };
    13 
    14 int main()
    15 {
    16     int msqid;
    17     key_t key;
    18     struct msg_form msg;
    19     
    20     // 获取key值
    21     if((key = ftok(MSG_FILE,'z')) < 0)
    22     {
    23         perror("ftok error");
    24         exit(1);
    25     }
    26 
    27     // 打印key值
    28     printf("Message Queue - Server key is: %d.
    ", key);
    29 
    30     // 创建消息队列
    31     if ((msqid = msgget(key, IPC_CREAT|0777)) == -1)
    32     {
    33         perror("msgget error");
    34         exit(1);
    35     }
    36 
    37     // 打印消息队列ID及进程ID
    38     printf("My msqid is: %d.
    ", msqid);
    39     printf("My pid is: %d.
    ", getpid());
    40 
    41     // 循环读取消息
    42     for(;;) 
    43     {
    44         msgrcv(msqid, &msg, 256, 888, 0);// 返回类型为888的第一个消息
    45         printf("Server: receive msg.mtext is: %s.
    ", msg.mtext);
    46         printf("Server: receive msg.mtype is: %d.
    ", msg.mtype);
    47 
    48         msg.mtype = 999; // 客户端接收的消息类型
    49         sprintf(msg.mtext, "hello, I'm server %d", getpid());
    50         msgsnd(msqid, &msg, sizeof(msg.mtext), 0);
    51     }
    52     return 0;
    53 }
    复制代码

    msg_client.c

    复制代码
     1 #include <stdio.h>
     2 #include <stdlib.h>
     3 #include <sys/msg.h>
     4 
     5 // 用于创建一个唯一的key
     6 #define MSG_FILE "/etc/passwd"
     7 
     8 // 消息结构
     9 struct msg_form {
    10     long mtype;
    11     char mtext[256];
    12 };
    13 
    14 int main()
    15 {
    16     int msqid;
    17     key_t key;
    18     struct msg_form msg;
    19 
    20     // 获取key值
    21     if ((key = ftok(MSG_FILE, 'z')) < 0) 
    22     {
    23         perror("ftok error");
    24         exit(1);
    25     }
    26 
    27     // 打印key值
    28     printf("Message Queue - Client key is: %d.
    ", key);
    29 
    30     // 打开消息队列
    31     if ((msqid = msgget(key, IPC_CREAT|0777)) == -1) 
    32     {
    33         perror("msgget error");
    34         exit(1);
    35     }
    36 
    37     // 打印消息队列ID及进程ID
    38     printf("My msqid is: %d.
    ", msqid);
    39     printf("My pid is: %d.
    ", getpid());
    40 
    41     // 添加消息,类型为888
    42     msg.mtype = 888;
    43     sprintf(msg.mtext, "hello, I'm client %d", getpid());
    44     msgsnd(msqid, &msg, sizeof(msg.mtext), 0);
    45 
    46     // 读取类型为777的消息
    47     msgrcv(msqid, &msg, 256, 999, 0);
    48     printf("Client: receive msg.mtext is: %s.
    ", msg.mtext);
    49     printf("Client: receive msg.mtype is: %d.
    ", msg.mtype);
    50     return 0;
    51 }
    复制代码

    四、信号量

    信号量(semaphore)与已经介绍过的 IPC 结构不同,它是一个计数器。信号量用于实现进程间的互斥与同步,而不是用于存储进程间通信数据。

    1、特点

    1. 信号量用于进程间同步,若要在进程间传递数据需要结合共享内存。

    2. 信号量基于操作系统的 PV 操作,程序对信号量的操作都是原子操作。

    3. 每次对信号量的 PV 操作不仅限于对信号量值加 1 或减 1,而且可以加减任意正整数。

    4. 支持信号量组。

    2、原型

    最简单的信号量是只能取 0 和 1 的变量,这也是信号量最常见的一种形式,叫做二值信号量(Binary Semaphore)。而可以取多个正整数的信号量被称为通用信号量。

    Linux 下的信号量函数都是在通用的信号量数组上进行操作,而不是在一个单一的二值信号量上进行操作。

    复制代码
    1 #include <sys/sem.h>
    2 // 创建或获取一个信号量组:若成功返回信号量集ID,失败返回-1
    3 int semget(key_t key, int num_sems, int sem_flags);
    4 // 对信号量组进行操作,改变信号量的值:成功返回0,失败返回-1
    5 int semop(int semid, struct sembuf semoparray[], size_t numops);  
    6 // 控制信号量的相关信息
    7 int semctl(int semid, int sem_num, int cmd, ...);
    复制代码

    semget创建新的信号量集合时,必须指定集合中信号量的个数(即num_sems),通常为1; 如果是引用一个现有的集合,则将num_sems指定为 0 。

    semop函数中,sembuf结构的定义如下:

    复制代码
    1 struct sembuf 
    2 {
    3     short sem_num; // 信号量组中对应的序号,0~sem_nums-1
    4     short sem_op;  // 信号量值在一次操作中的改变量
    5     short sem_flg; // IPC_NOWAIT, SEM_UNDO
    6 }
    复制代码

    其中 sem_op 是一次操作中的信号量的改变量:

    • sem_op > 0,表示进程释放相应的资源数,将 sem_op 的值加到信号量的值上。如果有进程正在休眠等待此信号量,则换行它们。

    • sem_op < 0,请求 sem_op 的绝对值的资源。

      • 如果相应的资源数可以满足请求,则将该信号量的值减去sem_op的绝对值,函数成功返回。
      • 当相应的资源数不能满足请求时,这个操作与sem_flg有关。
        • sem_flg 指定IPC_NOWAIT,则semop函数出错返回EAGAIN
        • sem_flg 没有指定IPC_NOWAIT,则将该信号量的semncnt值加1,然后进程挂起直到下述情况发生:
          1. 当相应的资源数可以满足请求,此信号量的semncnt值减1,该信号量的值减去sem_op的绝对值。成功返回;
          2. 此信号量被删除,函数smeop出错返回EIDRM;
          3. 进程捕捉到信号,并从信号处理函数返回,此情况下将此信号量的semncnt值减1,函数semop出错返回EINTR
    • sem_op == 0,进程阻塞直到信号量的相应值为0:

      • 当信号量已经为0,函数立即返回。
      • 如果信号量的值不为0,则依据sem_flg决定函数动作:
        • sem_flg指定IPC_NOWAIT,则出错返回EAGAIN
        • sem_flg没有指定IPC_NOWAIT,则将该信号量的semncnt值加1,然后进程挂起直到下述情况发生:
          1. 信号量值为0,将信号量的semzcnt的值减1,函数semop成功返回;
          2. 此信号量被删除,函数smeop出错返回EIDRM;
          3. 进程捕捉到信号,并从信号处理函数返回,在此情况将此信号量的semncnt值减1,函数semop出错返回EINTR

    semctl函数中的命令有多种,这里就说两个常用的:

    • SETVAL:用于初始化信号量为一个已知的值。所需要的值作为联合semun的val成员来传递。在信号量第一次使用之前需要设置信号量。
    • IPC_RMID:删除一个信号量集合。如果不删除信号量,它将继续在系统中存在,即使程序已经退出,它可能在你下次运行此程序时引发问题,而且信号量是一种有限的资源。

    3、例子

    复制代码
      1 #include<stdio.h>
      2 #include<stdlib.h>
      3 #include<sys/sem.h>
      4 
      5 // 联合体,用于semctl初始化
      6 union semun
      7 {
      8     int              val; /*for SETVAL*/
      9     struct semid_ds *buf;
     10     unsigned short  *array;
     11 };
     12 
     13 // 初始化信号量
     14 int init_sem(int sem_id, int value)
     15 {
     16     union semun tmp;
     17     tmp.val = value;
     18     if(semctl(sem_id, 0, SETVAL, tmp) == -1)
     19     {
     20         perror("Init Semaphore Error");
     21         return -1;
     22     }
     23     return 0;
     24 }
     25 
     26 // P操作:
     27 //    若信号量值为1,获取资源并将信号量值-1 
     28 //    若信号量值为0,进程挂起等待
     29 int sem_p(int sem_id)
     30 {
     31     struct sembuf sbuf;
     32     sbuf.sem_num = 0; /*序号*/
     33     sbuf.sem_op = -1; /*P操作*/
     34     sbuf.sem_flg = SEM_UNDO;
     35 
     36     if(semop(sem_id, &sbuf, 1) == -1)
     37     {
     38         perror("P operation Error");
     39         return -1;
     40     }
     41     return 0;
     42 }
     43 
     44 // V操作:
     45 //    释放资源并将信号量值+1
     46 //    如果有进程正在挂起等待,则唤醒它们
     47 int sem_v(int sem_id)
     48 {
     49     struct sembuf sbuf;
     50     sbuf.sem_num = 0; /*序号*/
     51     sbuf.sem_op = 1;  /*V操作*/
     52     sbuf.sem_flg = SEM_UNDO;
     53 
     54     if(semop(sem_id, &sbuf, 1) == -1)
     55     {
     56         perror("V operation Error");
     57         return -1;
     58     }
     59     return 0;
     60 }
     61 
     62 // 删除信号量集
     63 int del_sem(int sem_id)
     64 {
     65     union semun tmp;
     66     if(semctl(sem_id, 0, IPC_RMID, tmp) == -1)
     67     {
     68         perror("Delete Semaphore Error");
     69         return -1;
     70     }
     71     return 0;
     72 }
     73 
     74 
     75 int main()
     76 {
     77     int sem_id;  // 信号量集ID
     78     key_t key;  
     79     pid_t pid;
     80 
     81     // 获取key值
     82     if((key = ftok(".", 'z')) < 0)
     83     {
     84         perror("ftok error");
     85         exit(1);
     86     }
     87 
     88     // 创建信号量集,其中只有一个信号量
     89     if((sem_id = semget(key, 1, IPC_CREAT|0666)) == -1)
     90     {
     91         perror("semget error");
     92         exit(1);
     93     }
     94 
     95     // 初始化:初值设为0资源被占用
     96     init_sem(sem_id, 0);
     97 
     98     if((pid = fork()) == -1)
     99         perror("Fork Error");
    100     else if(pid == 0) /*子进程*/ 
    101     {
    102         sleep(2);
    103         printf("Process child: pid=%d
    ", getpid());
    104         sem_v(sem_id);  /*释放资源*/
    105     }
    106     else  /*父进程*/
    107     {
    108         sem_p(sem_id);   /*等待资源*/
    109         printf("Process father: pid=%d
    ", getpid());
    110         sem_v(sem_id);   /*释放资源*/
    111         del_sem(sem_id); /*删除信号量集*/
    112     }
    113     return 0;
    114 }
    复制代码

    上面的例子如果不加信号量,则父进程会先执行完毕。这里加了信号量让父进程等待子进程执行完以后再执行。

    五、共享内存

    共享内存(Shared Memory),指两个或多个进程共享一个给定的存储区。

    1、特点

    1. 共享内存是最快的一种 IPC,因为进程是直接对内存进行存取。

    2. 因为多个进程可以同时操作,所以需要进行同步。

    3. 信号量+共享内存通常结合在一起使用,信号量用来同步对共享内存的访问。

    2、原型

    复制代码
    1 #include <sys/shm.h>
    2 // 创建或获取一个共享内存:成功返回共享内存ID,失败返回-1
    3 int shmget(key_t key, size_t size, int flag);
    4 // 连接共享内存到当前进程的地址空间:成功返回指向共享内存的指针,失败返回-1
    5 void *shmat(int shm_id, const void *addr, int flag);
    6 // 断开与共享内存的连接:成功返回0,失败返回-1
    7 int shmdt(void *addr); 
    8 // 控制共享内存的相关信息:成功返回0,失败返回-1
    9 int shmctl(int shm_id, int cmd, struct shmid_ds *buf);
    复制代码

    当用shmget函数创建一段共享内存时,必须指定其 size;而如果引用一个已存在的共享内存,则将 size 指定为0 。

    当一段共享内存被创建以后,它并不能被任何进程访问。必须使用shmat函数连接该共享内存到当前进程的地址空间,连接成功后把共享内存区对象映射到调用进程的地址空间,随后可像本地空间一样访问。

    shmdt函数是用来断开shmat建立的连接的。注意,这并不是从系统中删除该共享内存,只是当前进程不能再访问该共享内存而已。

    shmctl函数可以对共享内存执行多种操作,根据参数 cmd 执行相应的操作。常用的是IPC_RMID(从系统中删除该共享内存)。

    3、例子

    下面这个例子,使用了【共享内存+信号量+消息队列】的组合来实现服务器进程与客户进程间的通信。

    • 共享内存用来传递数据;
    • 信号量用来同步;
    • 消息队列用来 在客户端修改了共享内存后 通知服务器读取。

    server.c

    复制代码
      1 #include<stdio.h>
      2 #include<stdlib.h>
      3 #include<sys/shm.h>  // shared memory
      4 #include<sys/sem.h>  // semaphore
      5 #include<sys/msg.h>  // message queue
      6 #include<string.h>   // memcpy
      7 
      8 // 消息队列结构
      9 struct msg_form {
     10     long mtype;
     11     char mtext;
     12 };
     13 
     14 // 联合体,用于semctl初始化
     15 union semun
     16 {
     17     int              val; /*for SETVAL*/
     18     struct semid_ds *buf;
     19     unsigned short  *array;
     20 };
     21 
     22 // 初始化信号量
     23 int init_sem(int sem_id, int value)
     24 {
     25     union semun tmp;
     26     tmp.val = value;
     27     if(semctl(sem_id, 0, SETVAL, tmp) == -1)
     28     {
     29         perror("Init Semaphore Error");
     30         return -1;
     31     }
     32     return 0;
     33 }
     34 
     35 // P操作:
     36 //  若信号量值为1,获取资源并将信号量值-1 
     37 //  若信号量值为0,进程挂起等待
     38 int sem_p(int sem_id)
     39 {
     40     struct sembuf sbuf;
     41     sbuf.sem_num = 0; /*序号*/
     42     sbuf.sem_op = -1; /*P操作*/
     43     sbuf.sem_flg = SEM_UNDO;
     44 
     45     if(semop(sem_id, &sbuf, 1) == -1)
     46     {
     47         perror("P operation Error");
     48         return -1;
     49     }
     50     return 0;
     51 }
     52 
     53 // V操作:
     54 //  释放资源并将信号量值+1
     55 //  如果有进程正在挂起等待,则唤醒它们
     56 int sem_v(int sem_id)
     57 {
     58     struct sembuf sbuf;
     59     sbuf.sem_num = 0; /*序号*/
     60     sbuf.sem_op = 1;  /*V操作*/
     61     sbuf.sem_flg = SEM_UNDO;
     62 
     63     if(semop(sem_id, &sbuf, 1) == -1)
     64     {
     65         perror("V operation Error");
     66         return -1;
     67     }
     68     return 0;
     69 }
     70 
     71 // 删除信号量集
     72 int del_sem(int sem_id)
     73 {
     74     union semun tmp;
     75     if(semctl(sem_id, 0, IPC_RMID, tmp) == -1)
     76     {
     77         perror("Delete Semaphore Error");
     78         return -1;
     79     }
     80     return 0;
     81 }
     82 
     83 // 创建一个信号量集
     84 int creat_sem(key_t key)
     85 {
     86     int sem_id;
     87     if((sem_id = semget(key, 1, IPC_CREAT|0666)) == -1)
     88     {
     89         perror("semget error");
     90         exit(-1);
     91     }
     92     init_sem(sem_id, 1);  /*初值设为1资源未占用*/
     93     return sem_id;
     94 }
     95 
     96 
     97 int main()
     98 {
     99     key_t key;
    100     int shmid, semid, msqid;
    101     char *shm;
    102     char data[] = "this is server";
    103     struct shmid_ds buf1;  /*用于删除共享内存*/
    104     struct msqid_ds buf2;  /*用于删除消息队列*/
    105     struct msg_form msg;  /*消息队列用于通知对方更新了共享内存*/
    106 
    107     // 获取key值
    108     if((key = ftok(".", 'z')) < 0)
    109     {
    110         perror("ftok error");
    111         exit(1);
    112     }
    113 
    114     // 创建共享内存
    115     if((shmid = shmget(key, 1024, IPC_CREAT|0666)) == -1)
    116     {
    117         perror("Create Shared Memory Error");
    118         exit(1);
    119     }
    120 
    121     // 连接共享内存
    122     shm = (char*)shmat(shmid, 0, 0);
    123     if((int)shm == -1)
    124     {
    125         perror("Attach Shared Memory Error");
    126         exit(1);
    127     }
    128 
    129 
    130     // 创建消息队列
    131     if ((msqid = msgget(key, IPC_CREAT|0777)) == -1)
    132     {
    133         perror("msgget error");
    134         exit(1);
    135     }
    136 
    137     // 创建信号量
    138     semid = creat_sem(key);
    139     
    140     // 读数据
    141     while(1)
    142     {
    143         msgrcv(msqid, &msg, 1, 888, 0); /*读取类型为888的消息*/
    144         if(msg.mtext == 'q')  /*quit - 跳出循环*/ 
    145             break;
    146         if(msg.mtext == 'r')  /*read - 读共享内存*/
    147         {
    148             sem_p(semid);
    149             printf("%s
    ",shm);
    150             sem_v(semid);
    151         }
    152     }
    153 
    154     // 断开连接
    155     shmdt(shm);
    156 
    157     /*删除共享内存、消息队列、信号量*/
    158     shmctl(shmid, IPC_RMID, &buf1);
    159     msgctl(msqid, IPC_RMID, &buf2);
    160     del_sem(semid);
    161     return 0;
    162 }
    复制代码

    client.c

    复制代码
      1 #include<stdio.h>
      2 #include<stdlib.h>
      3 #include<sys/shm.h>  // shared memory
      4 #include<sys/sem.h>  // semaphore
      5 #include<sys/msg.h>  // message queue
      6 #include<string.h>   // memcpy
      7 
      8 // 消息队列结构
      9 struct msg_form {
     10     long mtype;
     11     char mtext;
     12 };
     13 
     14 // 联合体,用于semctl初始化
     15 union semun
     16 {
     17     int              val; /*for SETVAL*/
     18     struct semid_ds *buf;
     19     unsigned short  *array;
     20 };
     21 
     22 // P操作:
     23 //  若信号量值为1,获取资源并将信号量值-1 
     24 //  若信号量值为0,进程挂起等待
     25 int sem_p(int sem_id)
     26 {
     27     struct sembuf sbuf;
     28     sbuf.sem_num = 0; /*序号*/
     29     sbuf.sem_op = -1; /*P操作*/
     30     sbuf.sem_flg = SEM_UNDO;
     31 
     32     if(semop(sem_id, &sbuf, 1) == -1)
     33     {
     34         perror("P operation Error");
     35         return -1;
     36     }
     37     return 0;
     38 }
     39 
     40 // V操作:
     41 //  释放资源并将信号量值+1
     42 //  如果有进程正在挂起等待,则唤醒它们
     43 int sem_v(int sem_id)
     44 {
     45     struct sembuf sbuf;
     46     sbuf.sem_num = 0; /*序号*/
     47     sbuf.sem_op = 1;  /*V操作*/
     48     sbuf.sem_flg = SEM_UNDO;
     49 
     50     if(semop(sem_id, &sbuf, 1) == -1)
     51     {
     52         perror("V operation Error");
     53         return -1;
     54     }
     55     return 0;
     56 }
     57 
     58 
     59 int main()
     60 {
     61     key_t key;
     62     int shmid, semid, msqid;
     63     char *shm;
     64     struct msg_form msg;
     65     int flag = 1; /*while循环条件*/
     66 
     67     // 获取key值
     68     if((key = ftok(".", 'z')) < 0)
     69     {
     70         perror("ftok error");
     71         exit(1);
     72     }
     73 
     74     // 获取共享内存
     75     if((shmid = shmget(key, 1024, 0)) == -1)
     76     {
     77         perror("shmget error");
     78         exit(1);
     79     }
     80 
     81     // 连接共享内存
     82     shm = (char*)shmat(shmid, 0, 0);
     83     if((int)shm == -1)
     84     {
     85         perror("Attach Shared Memory Error");
     86         exit(1);
     87     }
     88 
     89     // 创建消息队列
     90     if ((msqid = msgget(key, 0)) == -1)
     91     {
     92         perror("msgget error");
     93         exit(1);
     94     }
     95 
     96     // 获取信号量
     97     if((semid = semget(key, 0, 0)) == -1)
     98     {
     99         perror("semget error");
    100         exit(1);
    101     }
    102     
    103     // 写数据
    104     printf("***************************************
    ");
    105     printf("*                 IPC                 *
    ");
    106     printf("*    Input r to send data to server.  *
    ");
    107     printf("*    Input q to quit.                 *
    ");
    108     printf("***************************************
    ");
    109     
    110     while(flag)
    111     {
    112         char c;
    113         printf("Please input command: ");
    114         scanf("%c", &c);
    115         switch(c)
    116         {
    117             case 'r':
    118                 printf("Data to send: ");
    119                 sem_p(semid);  /*访问资源*/
    120                 scanf("%s", shm);
    121                 sem_v(semid);  /*释放资源*/
    122                 /*清空标准输入缓冲区*/
    123                 while((c=getchar())!='
    ' && c!=EOF);
    124                 msg.mtype = 888;  
    125                 msg.mtext = 'r';  /*发送消息通知服务器读数据*/
    126                 msgsnd(msqid, &msg, sizeof(msg.mtext), 0);
    127                 break;
    128             case 'q':
    129                 msg.mtype = 888;
    130                 msg.mtext = 'q';
    131                 msgsnd(msqid, &msg, sizeof(msg.mtext), 0);
    132                 flag = 0;
    133                 break;
    134             default:
    135                 printf("Wrong input!
    ");
    136                 /*清空标准输入缓冲区*/
    137                 while((c=getchar())!='
    ' && c!=EOF);
    138         }
    139     }
    140 
    141     // 断开连接
    142     shmdt(shm);
    143 
    144     return 0;
    145 }
    复制代码

    注意:当scanf()输入字符或字符串时,缓冲区中遗留下了 ,所以每次输入操作后都需要清空标准输入的缓冲区。但是由于 gcc 编译器不支持fflush(stdin)(它只是标准C的扩展),所以我们使用了替代方案:

    1 while((c=getchar())!='
    ' && c!=EOF);

    五种通讯方式总结

    1.管道:速度慢,容量有限,只有父子进程能通讯    

    2.FIFO:任何进程间都能通讯,但速度慢    

    3.消息队列:容量受到系统限制,且要注意第一次读的时候,要考虑上一次没有读完数据的问题    

    4.信号量:不能传递复杂消息,只能用来同步    

    5.共享内存区:能够很容易控制容量,速度快,但要保持同步,比如一个进程在写的时候,另一个进程要注意读写的问题,相当于线程中的线程安全,当然,共享内存区同样可以用作线程间通讯,不过没这个必要,线程间本来就已经共享了同一进程内的一块内存

  • 相关阅读:
    如何编译完全使用静态库的可执行文件
    交叉编译jpeglib遇到的问题
    安装SDL遇到的问题
    软链接/硬链接删除事项
    alias命令使用
    Linux下学习摄像头使用
    018 字符串类型及操作
    017 示例3-天天向上的力量
    016 数字类型及操作
    015 基本数据类型
  • 原文地址:https://www.cnblogs.com/sunke/p/8552728.html
Copyright © 2011-2022 走看看