zoukankan      html  css  js  c++  java
  • 数据结构-二叉树

    二叉树
    在计算机科学中,二叉树是每个结点最多有两个子树的树结构。通常子树被称作“左子树”(left subtree)和“右子树”(right subtree)。二叉树常被用于实现二叉查找树和二叉堆。
    一棵深度为k,且有2^k-1个节点的二叉树,称为满二叉树。这种树的特点是每一层上的节点数都是最大节点数。而在一棵二叉树中,除最后一层外,若其余层都是满的,并且最后一层或者是满的,或者是在右边缺少连续若干节点,则此二叉树为完全二叉树。具有n个节点的完全二叉树的深度为floor(log2n)+1。深度为k的完全二叉树,至多有2k-1个叶子节点,至多有2k-1个节点。
     

    类型

    (1)完全二叉树——若设二叉树的高度为h,除第 h 层外,其它各层 (1~h-1) 的结点数都达到最大个数,第h层有叶子结点,并且叶子结点都是从左到右依次排布,这就是完全二叉树
                       
     
    (2)满二叉树——除了叶结点外每一个结点都有左右子叶且叶子结点都处在最底层的二叉树。
                       
    (3)平衡二叉树——平衡二叉树又被称为AVL树(区别于AVL算法),它是一棵二叉排序树,且具有以下性质:它是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树
     
     
    二叉树的遍历和创建
     
    from collections import deque


    class BitTreeNode:
    def __init__(self,data):
    self.data=data
    self.lchild = None #左孩子
    self.rchild = None #右孩子


    a = BitTreeNode('A')
    b = BitTreeNode('B')
    c = BitTreeNode('C')
    d = BitTreeNode('D')
    e = BitTreeNode('E')
    f = BitTreeNode('F')
    g = BitTreeNode('G')

    e.lchild = a
    e.rchild = g
    a.rchild = c
    c.lchild = b
    c.rchild = d
    g.rchild = f


    root = e #根节点
    # print(root.lchild.rchild.data)

    #前序遍历
    def pre_order(root):
    if root : #——访问根结点的操作发生在遍历其左右子树之前。
    print(root.data,end=',')
    pre_order(root.lchild)
    pre_order(root.rchild)

    # pre_order(root)


    # 中序遍历
    def in_order(root):
    if root :
    in_order(root.lchild) #root左孩子
    print(root.data,end=',')#root本身
    in_order(root.rchild) #root右孩子

    # in_order(root)

    # 后序遍历

    def post_order(root):
    if root:
    post_order(root.lchild)
    post_order(root.rchild)
    print(root.data,end=',')

    # post_order(root)

    #层序遍历
    def level_order(root):
    queue = deque()
    queue.append(root)
    while len(queue)>0:
    node = queue.popleft()
    print(node.data,end=',')
    if node.lchild:
    queue.append(node.lchild)
    if node.rchild:
    queue.append(node.rchild)


    level_order(root)

     二叉树的插入.查询.和删除
     
    '''插入数据到树'''
    class BiTreeNode:
    def __init__(self,data): #这样传参也可以?
    self.data=data
    self.lchild = None
    self.rchild = None
    self.parent = None

    class BST :
    def __init__(self,li=None):
    self.root = None
    if li :
    for val in li:
    self.insert_no_rec(val)



    def insert(self,node,val):
    if not node:
    node = BiTreeNode(val) #不存在创建树和赋值node
    elif val<node.data: # 查找的数val小于选择的树node
    node.lchild = self.insert(node.lchlid,val)#左子树插入val
    node.lchild.parent = node #链接为node子树

    elif val>node.data :
    node.rchild = self.insert(node.lchlid,val)
    node.rchild.paret = node

    return node


    def insert_no_rec(self,val): #循环
    p = self.root
    if not p:
    self.root = BiTreeNode(val) #根节点
    return
    while True:
    if val < p.data : #比根小左根的左子节点
    if p.lchild:
    p = p.lchild
    else: #左孩子不存在
    p.lchild = BiTreeNode(val)
    p.lchild.parent = p
    return
    elif val > p.data:
    if p.rchild:
    p= p.rchild
    else:
    p.rchild = BiTreeNode(val)
    p.rchild.parent = p
    return
    else:
    return


    def query(self,node,val):
    if not node:
    return None
    if node.data<val:
    return self.query(node.rchile,val)
    elif node.data>val:
    return self.query(node.lchild,val)
    else:
    return node

    def query_no_rec(self,val):
    p = self.root
    while p:
    if p.data < val:
    p=p.rchild
    elif p.data > val :
    p = p.lchild
    else:
    return p
    return None


    def pre_order(self,root):
    if root: # ——访问根结点的操作发生在遍历其左右子树之前。
    print(root.data, end=',')
    self.pre_order(root.lchild)
    self.pre_order(root.rchild)


    def in_order(self,root):
    if root:
    self.in_order(root.lchild) # root左孩子
    print(root.data, end=',') # root本身
    self.in_order(root.rchild) # root右孩子


    def post_order(self,root):
    if root:
    self.post_order(root.lchild)
    self.post_order(root.rchild)
    print(root.data, end=',')


    def __remove_node_1(self,node):
    #情况一:node是叶子节点
    if not node.parent:
    self.root = None
    if node == node.parent.lchild: #node是他父亲的左孩子
    node.parent.lchild = None #将node父亲的左孩子也就是node滞空
    else:
    node.parent.rchild = None

    def __remove_node_21(self, node):
    #情况2.1:node只有一个左孩子
    if not node.parent: #node没有父亲也就是根节点
    self.root = node.lchild #node被删除node的左儿子上位
    node.lchild.parent = None #原node位置滞空
    elif node == node.parent.lchild :
    node.parent.lchild = node.lchild #node父亲的左孩子=node的左孩子
    node.lchild.parent = node.parent
    else:
    node.parent.rchild = node.lchild
    node.lchild.parent = node.parent

    def __remove_node_22(self, node):
    #情况2.1:node只有一个右孩子
    if not node.parent:
    self.root = node.rchild
    elif node == node.parent.lchild :
    node.parent.lchild = node.rchild
    node.rchild.parent = node.parent
    else:
    node.parent.rchild = node.rchild
    node.rchild.parent = node.parent


    def delete(self,val):
    if self.root: #不是空树
    node = self.query_no_rec(val)
    if not node:
    return False
    if not node.lchild and not node.rchild : #叶子节点
    self.__remove_node_1(node)
    elif not node.rchild : #只有一个左孩子
    self.__remove_node_21(node)
    elif not node.lchild : #只有一个右孩子
    self.__remove_node_22(node)
    else: #两个孩子都有
    min_node = node.rchild
    while min_node.lchild :
    min_node = min_node.lchild
    node.data = min_node.data
    #删除min_node
    if min_node.rchild :
    self.__remove_node_22(min_node)
    else:
    self.__remove_node_1(min_node)







    tree = BST([2,3,4,1,6,7,9,5,8]) #建树
    # tree.post_order(tree.root)
    # print('')
    tree.in_order(tree.root)
    print('')
    # tree.post_order(tree.root)


    # print(tree.query_no_rec(3).data) #查找

    tree.delete(4)
    tree.in_order(tree.root)




     
     
     
  • 相关阅读:
    SQL游标操作每隔5分钟时间段数据统计信息
    win64位操作系统下安装pl/sql developer 并登录连接到oracle12c
    分科目统计每科前三名的学生
    merge源表数据移植到目标表新表数据中
    sqlserver表分区
    用SqlBulkCopy批量插入数据到SqlServer数据库表中
    SQL server插入数据后,如何获取自增长字段的值?
    Java创建线程的三种方式
    Java用户线程和守护线程
    Java虚拟机详解
  • 原文地址:https://www.cnblogs.com/sunny666/p/10744609.html
Copyright © 2011-2022 走看看