zoukankan      html  css  js  c++  java
  • 4.3 最小生成树

    一.最小生成树的简介(Minimum spanning trees)

    1.最小生成树:给定一幅无向图,它的边具有不同的权值。最小生成树指具有最小权值之和的生成树。

       生成树指包含所有顶点的无环连通子图。

    2.两个假定:为了简化讨论,以保证MST存在并且唯一

    (1)边的权重是不同的

    (2)只考虑连通图

    3.切分(cut):指将图的所有顶点分为两个非空且不重叠的两个集合。

     横切边(crossing edge)是一条连接两个属于不同集合的顶点的边

    4.切分定理:给定任意的切分,它的横切边中权重最小者必然属于图的最小生成树

    5.贪心算法:利用上面的切分定理,有如下算法:

    (1)初始所有边涂为灰色

    (2)找到没有黑色横切边的切分,并将它的最小权重的边涂为黑色

    (3)重复上述过程直到V-1条边被涂为黑色

    6.基于上述贪心算法的思想,有如下几种有效的实现算法:

    (1)Kruskal's algorithm

    (2)Prim's algorithm

    (3)Boruvka's algorithm

    7.加权无向图的表示。在不带权的无向图中是在Bag中放顶点,这里是在Bag中放Edge对象。每个Edge对象使用两个端点和边的权重构成的。

    package com.cx.graph;
    
    import edu.princeton.cs.algs4.Bag;
    
    //无向图的表示
    public class EdgeWeightedGraph {
        private final int V;
        //Bag组成的数组,Bag中每一个元素时Edge类
        private Bag<Edge>[] adj;
        
        //初始化V个顶点的图
        public EdgeWeightedGraph(int V) {
            this.V=V;
            adj=(Bag<Edge>[])new Bag[V];
            //将每个元素初始化,不然会为null
            for(int v=0;v<V;v++) {
                adj[v]=new Bag<Edge>();
            }
        }
        //传入一条边,从而给对应的端点添加该边
        public void addEdge(Edge edge) {
            //获得这条边的两个端点
            int v=edge.either();
            int w=edge.other(v);
            adj[v].add(edge);
            adj[w].add(edge);
        }
        //包含该顶点的所有边
        public Iterable<Edge> adj(int v){
            return adj[v];
        }
        public int V() {
            return V;
        }
        //返回加权无向图的所有边
        public Iterable<Edge> edges(){
            Bag<Edge> bag=new Bag<Edge>();
            for(int v=0;v<V;v++) 
                for(Edge e:adj[v])
                    if(e.other(v)>v) bag.add(e);
            return bag;
        }
        
    }
    View Code
    package com.cx.graph;
    
    public class Edge implements Comparable<Edge>{
        //定义边的两个端点以及边的权重
        private final int v,w;
        private final double weight;
        
        public Edge(int v,int w,double weight) {
            this.v=v;
            this.w=w;
            this.weight=weight;
        }
        //返回边两端的顶点之一
        public int either() {
            return v;
        }
        //返回边的另一个顶点
        public int other(int vertex) {
            if(vertex==v) return w;
            else return v;
        }
    
        public int compareTo(Edge that) {
            if(this.weight>that.weight) return 1;
            else if(this.weight<that.weight) return -1;
            else return 0;
        }
        
    }
    Edge

    二.Kruskal算法

    1.思想:将边按照权重大小按照递增的顺序排列,只要不形成环,就将下一条边加入到树T中。直到V-1条边被加入到T中为止。

    2.关键问题:添加一条边v-w到T是否会形成环?

    法一:使用4.1中的方法,以v为起点,使用DFS,判断添加边之前w是否可达。若可达,则添加边以后会形成环。(这里进行一次判断的时间与V成正比)

    法二:使用之前的union-find数据结构,即(这里进行一次判断的时间logV)

    (1)对T中每一个连通分量维持一个集合

    (2)如果v和w在相同的集合中,那么增加v-w会形成环(uf.connected(v, w))

    (3)否则将v-w加入到T,并将v和w的集合合并(uf.union(v, w))

    3.实现代码:

    package com.cx.graph;
    
    
    import edu.princeton.cs.algs4.MinPQ;
    import edu.princeton.cs.algs4.Queue;
    import edu.princeton.cs.algs4.UF;
    
    public class KruskalMST {
        private Queue<Edge> mst =new Queue<Edge>();
        
        public KruskalMST(EdgeWeightedGraph G) {
            MinPQ<Edge> pq=new MinPQ<Edge>();
            for(Edge e:G.edges())
                //使用优先级队列来维持边
                pq.insert(e);
        
            UF uf=new UF(G.V());
            //直到mst的元素个数为V-1
            while(!pq.isEmpty() && mst.size()<G.V()-1) {
                //每次取最小的边
                Edge e=pq.delMin();
                int v=e.either(), w=e.other(v);
                //判断e的两个顶点是否会在T中形成环
                //不在相同的连通分量中即可加入T
                if(!uf.connected(v, w)) {
                    //union两个连通分量
                    uf.union(v, w);
                    //将边放入mst
                    mst.enqueue(e);
                }            
            }        
        }
        public Iterable<Edge> edges(){
            return mst;
        }
    }
    KruskalMST
    /******************************************************************************
     *  Compilation:  javac Queue.java
     *  Execution:    java Queue < input.txt
     *  Dependencies: StdIn.java StdOut.java
     *  Data files:   http://algs4.cs.princeton.edu/13stacks/tobe.txt  
     *
     *  A generic queue, implemented using a linked list.
     *
     *  % java Queue < tobe.txt 
     *  to be or not to be (2 left on queue)
     *
     ******************************************************************************/
    
    package edu.princeton.cs.algs4;
    
    import java.util.Iterator;
    import java.util.NoSuchElementException;
    
    /**
     *  The {@code Queue} class represents a first-in-first-out (FIFO)
     *  queue of generic items.
     *  It supports the usual <em>enqueue</em> and <em>dequeue</em>
     *  operations, along with methods for peeking at the first item,
     *  testing if the queue is empty, and iterating through
     *  the items in FIFO order.
     *  <p>
     *  This implementation uses a singly-linked list with a static nested class for
     *  linked-list nodes. See {@link LinkedQueue} for the version from the
     *  textbook that uses a non-static nested class.
     *  The <em>enqueue</em>, <em>dequeue</em>, <em>peek</em>, <em>size</em>, and <em>is-empty</em>
     *  operations all take constant time in the worst case.
     *  <p>
     *  For additional documentation, see <a href="http://algs4.cs.princeton.edu/13stacks">Section 1.3</a> of
     *  <i>Algorithms, 4th Edition</i> by Robert Sedgewick and Kevin Wayne.
     *
     *  @author Robert Sedgewick
     *  @author Kevin Wayne
     *
     *  @param <Item> the generic type of an item in this queue
     */
    public class Queue<Item> implements Iterable<Item> {
        private Node<Item> first;    // beginning of queue
        private Node<Item> last;     // end of queue
        private int n;               // number of elements on queue
    
        // helper linked list class
        private static class Node<Item> {
            private Item item;
            private Node<Item> next;
        }
    
        /**
         * Initializes an empty queue.
         */
        public Queue() {
            first = null;
            last  = null;
            n = 0;
        }
    
        /**
         * Returns true if this queue is empty.
         *
         * @return {@code true} if this queue is empty; {@code false} otherwise
         */
        public boolean isEmpty() {
            return first == null;
        }
    
        /**
         * Returns the number of items in this queue.
         *
         * @return the number of items in this queue
         */
        public int size() {
            return n;
        }
    
        /**
         * Returns the item least recently added to this queue.
         *
         * @return the item least recently added to this queue
         * @throws NoSuchElementException if this queue is empty
         */
        public Item peek() {
            if (isEmpty()) throw new NoSuchElementException("Queue underflow");
            return first.item;
        }
    
        /**
         * Adds the item to this queue.
         *
         * @param  item the item to add
         */
        public void enqueue(Item item) {
            Node<Item> oldlast = last;
            last = new Node<Item>();
            last.item = item;
            last.next = null;
            if (isEmpty()) first = last;
            else           oldlast.next = last;
            n++;
        }
    
        /**
         * Removes and returns the item on this queue that was least recently added.
         *
         * @return the item on this queue that was least recently added
         * @throws NoSuchElementException if this queue is empty
         */
        public Item dequeue() {
            if (isEmpty()) throw new NoSuchElementException("Queue underflow");
            Item item = first.item;
            first = first.next;
            n--;
            if (isEmpty()) last = null;   // to avoid loitering
            return item;
        }
    
        /**
         * Returns a string representation of this queue.
         *
         * @return the sequence of items in FIFO order, separated by spaces
         */
        public String toString() {
            StringBuilder s = new StringBuilder();
            for (Item item : this) {
                s.append(item);
                s.append(' ');
            }
            return s.toString();
        } 
    
        /**
         * Returns an iterator that iterates over the items in this queue in FIFO order.
         *
         * @return an iterator that iterates over the items in this queue in FIFO order
         */
        public Iterator<Item> iterator()  {
            return new ListIterator<Item>(first);  
        }
    
        // an iterator, doesn't implement remove() since it's optional
        private class ListIterator<Item> implements Iterator<Item> {
            private Node<Item> current;
    
            public ListIterator(Node<Item> first) {
                current = first;
            }
    
            public boolean hasNext()  { return current != null;                     }
            public void remove()      { throw new UnsupportedOperationException();  }
    
            public Item next() {
                if (!hasNext()) throw new NoSuchElementException();
                Item item = current.item;
                current = current.next; 
                return item;
            }
        }
    
    
        /**
         * Unit tests the {@code Queue} data type.
         *
         * @param args the command-line arguments
         */
        public static void main(String[] args) {
            Queue<String> queue = new Queue<String>();
            while (!StdIn.isEmpty()) {
                String item = StdIn.readString();
                if (!item.equals("-"))
                    queue.enqueue(item);
                else if (!queue.isEmpty())
                    StdOut.print(queue.dequeue() + " ");
            }
            StdOut.println("(" + queue.size() + " left on queue)");
        }
    }
    
    /******************************************************************************
     *  Copyright 2002-2016, Robert Sedgewick and Kevin Wayne.
     *
     *  This file is part of algs4.jar, which accompanies the textbook
     *
     *      Algorithms, 4th edition by Robert Sedgewick and Kevin Wayne,
     *      Addison-Wesley Professional, 2011, ISBN 0-321-57351-X.
     *      http://algs4.cs.princeton.edu
     *
     *
     *  algs4.jar is free software: you can redistribute it and/or modify
     *  it under the terms of the GNU General Public License as published by
     *  the Free Software Foundation, either version 3 of the License, or
     *  (at your option) any later version.
     *
     *  algs4.jar is distributed in the hope that it will be useful,
     *  but WITHOUT ANY WARRANTY; without even the implied warranty of
     *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     *  GNU General Public License for more details.
     *
     *  You should have received a copy of the GNU General Public License
     *  along with algs4.jar.  If not, see http://www.gnu.org/licenses.
     ******************************************************************************/
    Queue
    /******************************************************************************
     *  Compilation:  javac MinPQ.java
     *  Execution:    java MinPQ < input.txt
     *  Dependencies: StdIn.java StdOut.java
     *  Data files:   http://algs4.cs.princeton.edu/24pq/tinyPQ.txt
     *  
     *  Generic min priority queue implementation with a binary heap.
     *  Can be used with a comparator instead of the natural order.
     *
     *  % java MinPQ < tinyPQ.txt
     *  E A E (6 left on pq)
     *
     *  We use a one-based array to simplify parent and child calculations.
     *
     *  Can be optimized by replacing full exchanges with half exchanges
     *  (ala insertion sort).
     *
     ******************************************************************************/
    
    package edu.princeton.cs.algs4;
    
    import java.util.Comparator;
    import java.util.Iterator;
    import java.util.NoSuchElementException;
    
    /**
     *  The {@code MinPQ} class represents a priority queue of generic keys.
     *  It supports the usual <em>insert</em> and <em>delete-the-minimum</em>
     *  operations, along with methods for peeking at the minimum key,
     *  testing if the priority queue is empty, and iterating through
     *  the keys.
     *  <p>
     *  This implementation uses a binary heap.
     *  The <em>insert</em> and <em>delete-the-minimum</em> operations take
     *  logarithmic amortized time.
     *  The <em>min</em>, <em>size</em>, and <em>is-empty</em> operations take constant time.
     *  Construction takes time proportional to the specified capacity or the number of
     *  items used to initialize the data structure.
     *  <p>
     *  For additional documentation, see <a href="http://algs4.cs.princeton.edu/24pq">Section 2.4</a> of
     *  <i>Algorithms, 4th Edition</i> by Robert Sedgewick and Kevin Wayne.
     *
     *  @author Robert Sedgewick
     *  @author Kevin Wayne
     *
     *  @param <Key> the generic type of key on this priority queue
     */
    public class MinPQ<Key> implements Iterable<Key> {
        private Key[] pq;                    // store items at indices 1 to n
        private int n;                       // number of items on priority queue
        private Comparator<Key> comparator;  // optional comparator
    
        /**
         * Initializes an empty priority queue with the given initial capacity.
         *
         * @param  initCapacity the initial capacity of this priority queue
         */
        public MinPQ(int initCapacity) {
            pq = (Key[]) new Object[initCapacity + 1];
            n = 0;
        }
    
        /**
         * Initializes an empty priority queue.
         */
        public MinPQ() {
            this(1);
        }
    
        /**
         * Initializes an empty priority queue with the given initial capacity,
         * using the given comparator.
         *
         * @param  initCapacity the initial capacity of this priority queue
         * @param  comparator the order to use when comparing keys
         */
        public MinPQ(int initCapacity, Comparator<Key> comparator) {
            this.comparator = comparator;
            pq = (Key[]) new Object[initCapacity + 1];
            n = 0;
        }
    
        /**
         * Initializes an empty priority queue using the given comparator.
         *
         * @param  comparator the order to use when comparing keys
         */
        public MinPQ(Comparator<Key> comparator) {
            this(1, comparator);
        }
    
        /**
         * Initializes a priority queue from the array of keys.
         * <p>
         * Takes time proportional to the number of keys, using sink-based heap construction.
         *
         * @param  keys the array of keys
         */
        public MinPQ(Key[] keys) {
            n = keys.length;
            pq = (Key[]) new Object[keys.length + 1];
            for (int i = 0; i < n; i++)
                pq[i+1] = keys[i];
            for (int k = n/2; k >= 1; k--)
                sink(k);
            assert isMinHeap();
        }
    
        /**
         * Returns true if this priority queue is empty.
         *
         * @return {@code true} if this priority queue is empty;
         *         {@code false} otherwise
         */
        public boolean isEmpty() {
            return n == 0;
        }
    
        /**
         * Returns the number of keys on this priority queue.
         *
         * @return the number of keys on this priority queue
         */
        public int size() {
            return n;
        }
    
        /**
         * Returns a smallest key on this priority queue.
         *
         * @return a smallest key on this priority queue
         * @throws NoSuchElementException if this priority queue is empty
         */
        public Key min() {
            if (isEmpty()) throw new NoSuchElementException("Priority queue underflow");
            return pq[1];
        }
    
        // helper function to double the size of the heap array
        private void resize(int capacity) {
            assert capacity > n;
            Key[] temp = (Key[]) new Object[capacity];
            for (int i = 1; i <= n; i++) {
                temp[i] = pq[i];
            }
            pq = temp;
        }
    
        /**
         * Adds a new key to this priority queue.
         *
         * @param  x the key to add to this priority queue
         */
        public void insert(Key x) {
            // double size of array if necessary
            if (n == pq.length - 1) resize(2 * pq.length);
    
            // add x, and percolate it up to maintain heap invariant
            pq[++n] = x;
            swim(n);
            assert isMinHeap();
        }
    
        /**
         * Removes and returns a smallest key on this priority queue.
         *
         * @return a smallest key on this priority queue
         * @throws NoSuchElementException if this priority queue is empty
         */
        public Key delMin() {
            if (isEmpty()) throw new NoSuchElementException("Priority queue underflow");
            exch(1, n);
            Key min = pq[n--];
            sink(1);
            pq[n+1] = null;         // avoid loitering and help with garbage collection
            if ((n > 0) && (n == (pq.length - 1) / 4)) resize(pq.length  / 2);
            assert isMinHeap();
            return min;
        }
    
    
       /***************************************************************************
        * Helper functions to restore the heap invariant.
        ***************************************************************************/
    
        private void swim(int k) {
            while (k > 1 && greater(k/2, k)) {
                exch(k, k/2);
                k = k/2;
            }
        }
    
        private void sink(int k) {
            while (2*k <= n) {
                int j = 2*k;
                if (j < n && greater(j, j+1)) j++;
                if (!greater(k, j)) break;
                exch(k, j);
                k = j;
            }
        }
    
       /***************************************************************************
        * Helper functions for compares and swaps.
        ***************************************************************************/
        private boolean greater(int i, int j) {
            if (comparator == null) {
                return ((Comparable<Key>) pq[i]).compareTo(pq[j]) > 0;
            }
            else {
                return comparator.compare(pq[i], pq[j]) > 0;
            }
        }
    
        private void exch(int i, int j) {
            Key swap = pq[i];
            pq[i] = pq[j];
            pq[j] = swap;
        }
    
        // is pq[1..N] a min heap?
        private boolean isMinHeap() {
            return isMinHeap(1);
        }
    
        // is subtree of pq[1..n] rooted at k a min heap?
        private boolean isMinHeap(int k) {
            if (k > n) return true;
            int left = 2*k;
            int right = 2*k + 1;
            if (left  <= n && greater(k, left))  return false;
            if (right <= n && greater(k, right)) return false;
            return isMinHeap(left) && isMinHeap(right);
        }
    
    
        /**
         * Returns an iterator that iterates over the keys on this priority queue
         * in ascending order.
         * <p>
         * The iterator doesn't implement {@code remove()} since it's optional.
         *
         * @return an iterator that iterates over the keys in ascending order
         */
        public Iterator<Key> iterator() { return new HeapIterator(); }
    
        private class HeapIterator implements Iterator<Key> {
            // create a new pq
            private MinPQ<Key> copy;
    
            // add all items to copy of heap
            // takes linear time since already in heap order so no keys move
            public HeapIterator() {
                if (comparator == null) copy = new MinPQ<Key>(size());
                else                    copy = new MinPQ<Key>(size(), comparator);
                for (int i = 1; i <= n; i++)
                    copy.insert(pq[i]);
            }
    
            public boolean hasNext()  { return !copy.isEmpty();                     }
            public void remove()      { throw new UnsupportedOperationException();  }
    
            public Key next() {
                if (!hasNext()) throw new NoSuchElementException();
                return copy.delMin();
            }
        }
    
        /**
         * Unit tests the {@code MinPQ} data type.
         *
         * @param args the command-line arguments
         */
        public static void main(String[] args) {
            MinPQ<String> pq = new MinPQ<String>();
            while (!StdIn.isEmpty()) {
                String item = StdIn.readString();
                if (!item.equals("-")) pq.insert(item);
                else if (!pq.isEmpty()) StdOut.print(pq.delMin() + " ");
            }
            StdOut.println("(" + pq.size() + " left on pq)");
        }
    
    }
    
    /******************************************************************************
     *  Copyright 2002-2016, Robert Sedgewick and Kevin Wayne.
     *
     *  This file is part of algs4.jar, which accompanies the textbook
     *
     *      Algorithms, 4th edition by Robert Sedgewick and Kevin Wayne,
     *      Addison-Wesley Professional, 2011, ISBN 0-321-57351-X.
     *      http://algs4.cs.princeton.edu
     *
     *
     *  algs4.jar is free software: you can redistribute it and/or modify
     *  it under the terms of the GNU General Public License as published by
     *  the Free Software Foundation, either version 3 of the License, or
     *  (at your option) any later version.
     *
     *  algs4.jar is distributed in the hope that it will be useful,
     *  but WITHOUT ANY WARRANTY; without even the implied warranty of
     *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     *  GNU General Public License for more details.
     *
     *  You should have received a copy of the GNU General Public License
     *  along with algs4.jar.  If not, see http://www.gnu.org/licenses.
     ******************************************************************************/
    MinPQ
    /******************************************************************************
     *  Compilation:  javac UF.java
     *  Execution:    java UF < input.txt
     *  Dependencies: StdIn.java StdOut.java
     *  Data files:   http://algs4.cs.princeton.edu/15uf/tinyUF.txt
     *                http://algs4.cs.princeton.edu/15uf/mediumUF.txt
     *                http://algs4.cs.princeton.edu/15uf/largeUF.txt
     *
     *  Weighted quick-union by rank with path compression by halving.
     *
     *  % java UF < tinyUF.txt
     *  4 3
     *  3 8
     *  6 5
     *  9 4
     *  2 1
     *  5 0
     *  7 2
     *  6 1
     *  2 components
     *
     ******************************************************************************/
    
    package edu.princeton.cs.algs4;
    
    
    /**
     *  The {@code UF} class represents a <em>union鈥揻ind data type</em>
     *  (also known as the <em>disjoint-sets data type</em>).
     *  It supports the <em>union</em> and <em>find</em> operations,
     *  along with a <em>connected</em> operation for determining whether
     *  two sites are in the same component and a <em>count</em> operation that
     *  returns the total number of components.
     *  <p>
     *  The union鈥揻ind data type models connectivity among a set of <em>n</em>
     *  sites, named 0 through <em>n</em>&minus;1.
     *  The <em>is-connected-to</em> relation must be an 
     *  <em>equivalence relation</em>:
     *  <ul>
     *  <li> <em>Reflexive</em>: <em>p</em> is connected to <em>p</em>.
     *  <li> <em>Symmetric</em>: If <em>p</em> is connected to <em>q</em>,
     *       then <em>q</em> is connected to <em>p</em>.
     *  <li> <em>Transitive</em>: If <em>p</em> is connected to <em>q</em>
     *       and <em>q</em> is connected to <em>r</em>, then
     *       <em>p</em> is connected to <em>r</em>.
     *  </ul>
     *  <p>
     *  An equivalence relation partitions the sites into
     *  <em>equivalence classes</em> (or <em>components</em>). In this case,
     *  two sites are in the same component if and only if they are connected.
     *  Both sites and components are identified with integers between 0 and
     *  <em>n</em>&minus;1. 
     *  Initially, there are <em>n</em> components, with each site in its
     *  own component.  The <em>component identifier</em> of a component
     *  (also known as the <em>root</em>, <em>canonical element</em>, <em>leader</em>,
     *  or <em>set representative</em>) is one of the sites in the component:
     *  two sites have the same component identifier if and only if they are
     *  in the same component.
     *  <ul>
     *  <li><em>union</em>(<em>p</em>, <em>q</em>) adds a
     *      connection between the two sites <em>p</em> and <em>q</em>.
     *      If <em>p</em> and <em>q</em> are in different components,
     *      then it replaces
     *      these two components with a new component that is the union of
     *      the two.
     *  <li><em>find</em>(<em>p</em>) returns the component
     *      identifier of the component containing <em>p</em>.
     *  <li><em>connected</em>(<em>p</em>, <em>q</em>)
     *      returns true if both <em>p</em> and <em>q</em>
     *      are in the same component, and false otherwise.
     *  <li><em>count</em>() returns the number of components.
     *  </ul>
     *  <p>
     *  The component identifier of a component can change
     *  only when the component itself changes during a call to
     *  <em>union</em>鈥攊t cannot change during a call
     *  to <em>find</em>, <em>connected</em>, or <em>count</em>.
     *  <p>
     *  This implementation uses weighted quick union by rank with path compression
     *  by halving.
     *  Initializing a data structure with <em>n</em> sites takes linear time.
     *  Afterwards, the <em>union</em>, <em>find</em>, and <em>connected</em> 
     *  operations take logarithmic time (in the worst case) and the
     *  <em>count</em> operation takes constant time.
     *  Moreover, the amortized time per <em>union</em>, <em>find</em>,
     *  and <em>connected</em> operation has inverse Ackermann complexity.
     *  For alternate implementations of the same API, see
     *  {@link QuickUnionUF}, {@link QuickFindUF}, and {@link WeightedQuickUnionUF}.
     *
     *  <p>
     *  For additional documentation, see <a href="http://algs4.cs.princeton.edu/15uf">Section 1.5</a> of
     *  <i>Algorithms, 4th Edition</i> by Robert Sedgewick and Kevin Wayne.
     *
     *  @author Robert Sedgewick
     *  @author Kevin Wayne
     */
    
    public class UF {
    
        private int[] parent;  // parent[i] = parent of i
        private byte[] rank;   // rank[i] = rank of subtree rooted at i (never more than 31)
        private int count;     // number of components
    
        /**
         * Initializes an empty union鈥揻ind data structure with {@code n} sites
         * {@code 0} through {@code n-1}. Each site is initially in its own 
         * component.
         *
         * @param  n the number of sites
         * @throws IllegalArgumentException if {@code n < 0}
         */
        public UF(int n) {
            if (n < 0) throw new IllegalArgumentException();
            count = n;
            parent = new int[n];
            rank = new byte[n];
            for (int i = 0; i < n; i++) {
                parent[i] = i;
                rank[i] = 0;
            }
        }
    
        /**
         * Returns the component identifier for the component containing site {@code p}.
         *
         * @param  p the integer representing one site
         * @return the component identifier for the component containing site {@code p}
         * @throws IndexOutOfBoundsException unless {@code 0 <= p < n}
         */
        public int find(int p) {
            validate(p);
            while (p != parent[p]) {
                parent[p] = parent[parent[p]];    // path compression by halving
                p = parent[p];
            }
            return p;
        }
    
        /**
         * Returns the number of components.
         *
         * @return the number of components (between {@code 1} and {@code n})
         */
        public int count() {
            return count;
        }
      
        /**
         * Returns true if the the two sites are in the same component.
         *
         * @param  p the integer representing one site
         * @param  q the integer representing the other site
         * @return {@code true} if the two sites {@code p} and {@code q} are in the same component;
         *         {@code false} otherwise
         * @throws IndexOutOfBoundsException unless
         *         both {@code 0 <= p < n} and {@code 0 <= q < n}
         */
        public boolean connected(int p, int q) {
            return find(p) == find(q);
        }
      
        /**
         * Merges the component containing site {@code p} with the 
         * the component containing site {@code q}.
         *
         * @param  p the integer representing one site
         * @param  q the integer representing the other site
         * @throws IndexOutOfBoundsException unless
         *         both {@code 0 <= p < n} and {@code 0 <= q < n}
         */
        public void union(int p, int q) {
            int rootP = find(p);
            int rootQ = find(q);
            if (rootP == rootQ) return;
    
            // make root of smaller rank point to root of larger rank
            if      (rank[rootP] < rank[rootQ]) parent[rootP] = rootQ;
            else if (rank[rootP] > rank[rootQ]) parent[rootQ] = rootP;
            else {
                parent[rootQ] = rootP;
                rank[rootP]++;
            }
            count--;
        }
    
        // validate that p is a valid index
        private void validate(int p) {
            int n = parent.length;
            if (p < 0 || p >= n) {
                throw new IndexOutOfBoundsException("index " + p + " is not between 0 and " + (n-1));  
            }
        }
    
        /**
         * Reads in a an integer {@code n} and a sequence of pairs of integers
         * (between {@code 0} and {@code n-1}) from standard input, where each integer
         * in the pair represents some site;
         * if the sites are in different components, merge the two components
         * and print the pair to standard output.
         *
         * @param args the command-line arguments
         */
        public static void main(String[] args) {
            int n = StdIn.readInt();
            UF uf = new UF(n);
            while (!StdIn.isEmpty()) {
                int p = StdIn.readInt();
                int q = StdIn.readInt();
                if (uf.connected(p, q)) continue;
                uf.union(p, q);
                StdOut.println(p + " " + q);
            }
            StdOut.println(uf.count() + " components");
        }
    }
    
    
    /******************************************************************************
     *  Copyright 2002-2016, Robert Sedgewick and Kevin Wayne.
     *
     *  This file is part of algs4.jar, which accompanies the textbook
     *
     *      Algorithms, 4th edition by Robert Sedgewick and Kevin Wayne,
     *      Addison-Wesley Professional, 2011, ISBN 0-321-57351-X.
     *      http://algs4.cs.princeton.edu
     *
     *
     *  algs4.jar is free software: you can redistribute it and/or modify
     *  it under the terms of the GNU General Public License as published by
     *  the Free Software Foundation, either version 3 of the License, or
     *  (at your option) any later version.
     *
     *  algs4.jar is distributed in the hope that it will be useful,
     *  but WITHOUT ANY WARRANTY; without even the implied warranty of
     *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     *  GNU General Public License for more details.
     *
     *  You should have received a copy of the GNU General Public License
     *  along with algs4.jar.  If not, see http://www.gnu.org/licenses.
     ******************************************************************************/
    UF

    4.在最坏的情况下,Kruskal算法计算MST需要的时间和ElogE成正比

    三.Prim算法

    1.思想:

    (1)从0号顶点开始,按照下面的步骤贪心的增长树T

    (2)在恰好一个端点在T中的边中,选一条权重最小的边加入到T

    (3)重复上述过程直到T中有V-1条边

     2.关键问题:如何在恰好一个端点在T中的边中,找到一条权重最小的边?

     法一:lazy implementation

     法二:eager implementation

    3.lazy implementation

    (1)思想:

    ①维持一个边的优先级队列PQ,这些边至少有一个端点在T中

    ②不断删除PQ最小的边,如果这个边的两个端点都已经在T中,则直接将它丢弃,不加入到T

    ③否则(表明只有一个端点在T中,假设不在T中的点是w),将与w相连的所有边(以前未加入到PQ的边)加入到PQ中,并将w和该边加入到T

    ④重复上述过程直到T中包含V-1条边

    (2)代码实现:使用队列mst保存最小生成树中的边,使用优先级队列pq维持一个边的队列,这些边至少有一个端点在T中,使用marked[]对点进行标记,值是true的表示该点在mst中。

    package com.cx.graph;
    
    import edu.princeton.cs.algs4.MinPQ;
    import edu.princeton.cs.algs4.Queue;
    
    public class LazyPrimMST {
        //用来标记点在T中
        private boolean[] marked;
        //mst用于保存最小生成树中的边
        private Queue<Edge> mst;
        //用于维持边的PQ,这些边至少有一个端点在T中
        private MinPQ<Edge> pq;
        
        public LazyPrimMST(EdgeWeightedGraph G) {
            pq=new MinPQ<Edge>();
            mst=new Queue<>();
            marked=new boolean[G.V()];
            //初始化,标记顶点0并将与0相连的所有边加入到pq
            visited(G, 0);
            
            //直到最小生成树有V-1条边为止
            while(mst.size()!=(G.V()-1)) {
                //获得权重最小的边
                Edge e=pq.delMin();
                int v=e.either(),w=e.other(v);
                //如果两个点都被标记,则去掉该边继续
                if(marked[v]&&marked[w]) continue;
                //否则,将该边加入到mst中,并将未被标记的点相邻的边加入pq
                mst.enqueue(e);
                if(!marked[v]) visited(G, v);
                if(!marked[w]) visited(G, w);
            }
        }
        
        //标记顶点v并将v相连的所有边(另一个顶点未被标记)加入到pq
        private void visited(EdgeWeightedGraph G,int v) {
            marked[v]=true;
            for(Edge e:G.adj(v)) {
                //另一个顶点未被标记
                if(!marked[e.other(v)])
                    pq.insert(e);
            }
        }
    }
    View Code

    (3)性能:最坏情况下,prim算法需要的时间为ElogE,空间为E

    4.Eage implementation

    (1)思想:

    ①维持一个顶点的优先级队列PQ,这些顶点连接了T中的一条边,并且点v的优先级等于连接v的最短边的权重

    ②不断删除最小v和它所关联的边(这些边在T中)

    ③更新PQ,通过考虑所有与v关联的边e=v-x

    -如果点x已经在T中,忽略这个x

    -如果不在T中,将x加入到PQ

    -如果x-v变为了T中连接x的最短路,降低x的优先级

    (2)举例(黑色粗线表示在mst中的边,红线表示在优先级队列中的边)

    ①0出队列,并将与0相邻的顶点(7,2,4,6)加入PQ(按照边的权重维持优先级)。

    ②最小权重7出队列PQ,将与7相邻且不在T的点入队列。对于0来说已经在T,不考虑。对于2和4来说,已经具有较小边(0-2和0-4),维持权重不变。对于1和5来说入队列,并赋权(7-1,7-5)。

    ③最小权重1出队列PQ,将与7相邻且不在T的点入队列。7在T中不考虑。对于2和5来说,已经具有较小边(2-7,5-7)维持权重不变。对于3来说入队列,并赋权(1-3)。

    ④最小权重2出队列PQ,将与2相邻且不在T的点入队列。0,7,1在T中不考虑。对于3来说,2-3的权重更小(比1-3),更新3的权重。同样对于6来说,2-6的权重更小(比0-6),更新6的权重

    ⑤最小权重3出队列PQ,将与3相邻且不在T的点入队列。1,2在T中不考虑。对于6来说,已经具有较小边(2-6)维持权重不变。

    ⑥最小权重5出队列PQ,将与5相邻且不在T的点入队列。1,7在T中不考虑。对于4来说,4-5的权重更小(比0-4),更新4的权重。

    ⑦最小权重4出队列PQ,将与4相邻且不在T的点入队列。0,5,7在T中不考虑。对于6来说,已经具有较小边(2-6)维持权重不变。

    ⑧最小权重6出队列PQ,完成整个过程。

    (3)性能:最坏情况下,所需的时间与ElogV成正比,所需的空间与V成正比

    (4)代码实现:(没有完全弄懂)

    package com.cx.graph;
    
    import edu.princeton.cs.algs4.IndexMinPQ;
    
    public class EagePrimMST {
        //可能在树T中的边
        private Edge[] edgeTo;
        //这个点的权重w=这条边的权重edgeTo[w].weight()=distTo[w]
        private double[] distTo;
        //true表明已经在mst中了
        private boolean[] marked;
        //维持点的优先级队列
        private IndexMinPQ<Double> pq;
        
        public EagePrimMST(EdgeWeightedGraph G) {
            //初始化
            edgeTo=new Edge[G.V()];
            distTo=new double[G.V()];
            marked=new boolean[G.V()];
            for(int v=0;v<G.V();v++) {
                distTo[v]=Double.POSITIVE_INFINITY;
            }
            pq=new IndexMinPQ<Double>(G.V());
            
            distTo[0]=0.0;
            //用顶点0来初始化pq
            pq.insert(0, 0.0);
            while(!pq.isEmpty())
                visit(G,pq.delMin());
        }
        
        private void visit(EdgeWeightedGraph G,int v) {
            //将v加入T,并更新顶点和边
            marked[v]=true;
            for(Edge e:G.adj(v)) {
                int w=e.other(v);
                //w已经在T中,continue
                if(marked[w]) continue;
                
                //e的权重小于distTo[w],更新点的权重
                if(e.weight()<distTo[w]) {
                    //更新最佳边
                    edgeTo[w]=e;
                    //更新点的权重
                    distTo[w]=e.weight();
                    if(pq.contains(w)) pq.change(w, distTo[w]);
                    else               pq.insert(w, distTo[w]);
                }
            }
        }
    }
    View Code
    /******************************************************************************
     *  Compilation:  javac IndexMinPQ.java
     *  Execution:    java IndexMinPQ
     *  Dependencies: StdOut.java
     *
     *  Minimum-oriented indexed PQ implementation using a binary heap.
     *
     ******************************************************************************/
    
    package edu.princeton.cs.algs4;
    
    import java.util.Iterator;
    import java.util.NoSuchElementException;
    
    /**
     *  The {@code IndexMinPQ} class represents an indexed priority queue of generic keys.
     *  It supports the usual <em>insert</em> and <em>delete-the-minimum</em>
     *  operations, along with <em>delete</em> and <em>change-the-key</em> 
     *  methods. In order to let the client refer to keys on the priority queue,
     *  an integer between {@code 0} and {@code maxN - 1}
     *  is associated with each key鈥攖he client uses this integer to specify
     *  which key to delete or change.
     *  It also supports methods for peeking at the minimum key,
     *  testing if the priority queue is empty, and iterating through
     *  the keys.
     *  <p>
     *  This implementation uses a binary heap along with an array to associate
     *  keys with integers in the given range.
     *  The <em>insert</em>, <em>delete-the-minimum</em>, <em>delete</em>,
     *  <em>change-key</em>, <em>decrease-key</em>, and <em>increase-key</em>
     *  operations take logarithmic time.
     *  The <em>is-empty</em>, <em>size</em>, <em>min-index</em>, <em>min-key</em>,
     *  and <em>key-of</em> operations take constant time.
     *  Construction takes time proportional to the specified capacity.
     *  <p>
     *  For additional documentation, see <a href="http://algs4.cs.princeton.edu/24pq">Section 2.4</a> of
     *  <i>Algorithms, 4th Edition</i> by Robert Sedgewick and Kevin Wayne.
     *
     *  @author Robert Sedgewick
     *  @author Kevin Wayne
     *
     *  @param <Key> the generic type of key on this priority queue
     */
    public class IndexMinPQ<Key extends Comparable<Key>> implements Iterable<Integer> {
        private int maxN;        // maximum number of elements on PQ
        private int n;           // number of elements on PQ
        private int[] pq;        // binary heap using 1-based indexing
        private int[] qp;        // inverse of pq - qp[pq[i]] = pq[qp[i]] = i
        private Key[] keys;      // keys[i] = priority of i
    
        /**
         * Initializes an empty indexed priority queue with indices between {@code 0}
         * and {@code maxN - 1}.
         * @param  maxN the keys on this priority queue are index from {@code 0}
         *         {@code maxN - 1}
         * @throws IllegalArgumentException if {@code maxN < 0}
         */
        public IndexMinPQ(int maxN) {
            if (maxN < 0) throw new IllegalArgumentException();
            this.maxN = maxN;
            n = 0;
            keys = (Key[]) new Comparable[maxN + 1];    // make this of length maxN??
            pq   = new int[maxN + 1];
            qp   = new int[maxN + 1];                   // make this of length maxN??
            for (int i = 0; i <= maxN; i++)
                qp[i] = -1;
        }
    
        /**
         * Returns true if this priority queue is empty.
         *
         * @return {@code true} if this priority queue is empty;
         *         {@code false} otherwise
         */
        public boolean isEmpty() {
            return n == 0;
        }
    
        /**
         * Is {@code i} an index on this priority queue?
         *
         * @param  i an index
         * @return {@code true} if {@code i} is an index on this priority queue;
         *         {@code false} otherwise
         * @throws IndexOutOfBoundsException unless {@code 0 <= i < maxN}
         */
        public boolean contains(int i) {
            if (i < 0 || i >= maxN) throw new IndexOutOfBoundsException();
            return qp[i] != -1;
        }
    
        /**
         * Returns the number of keys on this priority queue.
         *
         * @return the number of keys on this priority queue
         */
        public int size() {
            return n;
        }
    
        /**
         * Associates key with index {@code i}.
         *
         * @param  i an index
         * @param  key the key to associate with index {@code i}
         * @throws IndexOutOfBoundsException unless {@code 0 <= i < maxN}
         * @throws IllegalArgumentException if there already is an item associated
         *         with index {@code i}
         */
        public void insert(int i, Key key) {
            if (i < 0 || i >= maxN) throw new IndexOutOfBoundsException();
            if (contains(i)) throw new IllegalArgumentException("index is already in the priority queue");
            n++;
            qp[i] = n;
            pq[n] = i;
            keys[i] = key;
            swim(n);
        }
    
        /**
         * Returns an index associated with a minimum key.
         *
         * @return an index associated with a minimum key
         * @throws NoSuchElementException if this priority queue is empty
         */
        public int minIndex() {
            if (n == 0) throw new NoSuchElementException("Priority queue underflow");
            return pq[1];
        }
    
        /**
         * Returns a minimum key.
         *
         * @return a minimum key
         * @throws NoSuchElementException if this priority queue is empty
         */
        public Key minKey() {
            if (n == 0) throw new NoSuchElementException("Priority queue underflow");
            return keys[pq[1]];
        }
    
        /**
         * Removes a minimum key and returns its associated index.
         * @return an index associated with a minimum key
         * @throws NoSuchElementException if this priority queue is empty
         */
        public int delMin() {
            if (n == 0) throw new NoSuchElementException("Priority queue underflow");
            int min = pq[1];
            exch(1, n--);
            sink(1);
            assert min == pq[n+1];
            qp[min] = -1;        // delete
            keys[min] = null;    // to help with garbage collection
            pq[n+1] = -1;        // not needed
            return min;
        }
    
        /**
         * Returns the key associated with index {@code i}.
         *
         * @param  i the index of the key to return
         * @return the key associated with index {@code i}
         * @throws IndexOutOfBoundsException unless {@code 0 <= i < maxN}
         * @throws NoSuchElementException no key is associated with index {@code i}
         */
        public Key keyOf(int i) {
            if (i < 0 || i >= maxN) throw new IndexOutOfBoundsException();
            if (!contains(i)) throw new NoSuchElementException("index is not in the priority queue");
            else return keys[i];
        }
    
        /**
         * Change the key associated with index {@code i} to the specified value.
         *
         * @param  i the index of the key to change
         * @param  key change the key associated with index {@code i} to this key
         * @throws IndexOutOfBoundsException unless {@code 0 <= i < maxN}
         * @throws NoSuchElementException no key is associated with index {@code i}
         */
        public void changeKey(int i, Key key) {
            if (i < 0 || i >= maxN) throw new IndexOutOfBoundsException();
            if (!contains(i)) throw new NoSuchElementException("index is not in the priority queue");
            keys[i] = key;
            swim(qp[i]);
            sink(qp[i]);
        }
    
        /**
         * Change the key associated with index {@code i} to the specified value.
         *
         * @param  i the index of the key to change
         * @param  key change the key associated with index {@code i} to this key
         * @throws IndexOutOfBoundsException unless {@code 0 <= i < maxN}
         * @deprecated Replaced by {@code changeKey(int, Key)}.
         */
        @Deprecated
        public void change(int i, Key key) {
            changeKey(i, key);
        }
    
        /**
         * Decrease the key associated with index {@code i} to the specified value.
         *
         * @param  i the index of the key to decrease
         * @param  key decrease the key associated with index {@code i} to this key
         * @throws IndexOutOfBoundsException unless {@code 0 <= i < maxN}
         * @throws IllegalArgumentException if {@code key >= keyOf(i)}
         * @throws NoSuchElementException no key is associated with index {@code i}
         */
        public void decreaseKey(int i, Key key) {
            if (i < 0 || i >= maxN) throw new IndexOutOfBoundsException();
            if (!contains(i)) throw new NoSuchElementException("index is not in the priority queue");
            if (keys[i].compareTo(key) <= 0)
                throw new IllegalArgumentException("Calling decreaseKey() with given argument would not strictly decrease the key");
            keys[i] = key;
            swim(qp[i]);
        }
    
        /**
         * Increase the key associated with index {@code i} to the specified value.
         *
         * @param  i the index of the key to increase
         * @param  key increase the key associated with index {@code i} to this key
         * @throws IndexOutOfBoundsException unless {@code 0 <= i < maxN}
         * @throws IllegalArgumentException if {@code key <= keyOf(i)}
         * @throws NoSuchElementException no key is associated with index {@code i}
         */
        public void increaseKey(int i, Key key) {
            if (i < 0 || i >= maxN) throw new IndexOutOfBoundsException();
            if (!contains(i)) throw new NoSuchElementException("index is not in the priority queue");
            if (keys[i].compareTo(key) >= 0)
                throw new IllegalArgumentException("Calling increaseKey() with given argument would not strictly increase the key");
            keys[i] = key;
            sink(qp[i]);
        }
    
        /**
         * Remove the key associated with index {@code i}.
         *
         * @param  i the index of the key to remove
         * @throws IndexOutOfBoundsException unless {@code 0 <= i < maxN}
         * @throws NoSuchElementException no key is associated with index {@code i}
         */
        public void delete(int i) {
            if (i < 0 || i >= maxN) throw new IndexOutOfBoundsException();
            if (!contains(i)) throw new NoSuchElementException("index is not in the priority queue");
            int index = qp[i];
            exch(index, n--);
            swim(index);
            sink(index);
            keys[i] = null;
            qp[i] = -1;
        }
    
    
       /***************************************************************************
        * General helper functions.
        ***************************************************************************/
        private boolean greater(int i, int j) {
            return keys[pq[i]].compareTo(keys[pq[j]]) > 0;
        }
    
        private void exch(int i, int j) {
            int swap = pq[i];
            pq[i] = pq[j];
            pq[j] = swap;
            qp[pq[i]] = i;
            qp[pq[j]] = j;
        }
    
    
       /***************************************************************************
        * Heap helper functions.
        ***************************************************************************/
        private void swim(int k) {
            while (k > 1 && greater(k/2, k)) {
                exch(k, k/2);
                k = k/2;
            }
        }
    
        private void sink(int k) {
            while (2*k <= n) {
                int j = 2*k;
                if (j < n && greater(j, j+1)) j++;
                if (!greater(k, j)) break;
                exch(k, j);
                k = j;
            }
        }
    
    
       /***************************************************************************
        * Iterators.
        ***************************************************************************/
    
        /**
         * Returns an iterator that iterates over the keys on the
         * priority queue in ascending order.
         * The iterator doesn't implement {@code remove()} since it's optional.
         *
         * @return an iterator that iterates over the keys in ascending order
         */
        public Iterator<Integer> iterator() { return new HeapIterator(); }
    
        private class HeapIterator implements Iterator<Integer> {
            // create a new pq
            private IndexMinPQ<Key> copy;
    
            // add all elements to copy of heap
            // takes linear time since already in heap order so no keys move
            public HeapIterator() {
                copy = new IndexMinPQ<Key>(pq.length - 1);
                for (int i = 1; i <= n; i++)
                    copy.insert(pq[i], keys[pq[i]]);
            }
    
            public boolean hasNext()  { return !copy.isEmpty();                     }
            public void remove()      { throw new UnsupportedOperationException();  }
    
            public Integer next() {
                if (!hasNext()) throw new NoSuchElementException();
                return copy.delMin();
            }
        }
    
    
        /**
         * Unit tests the {@code IndexMinPQ} data type.
         *
         * @param args the command-line arguments
         */
        public static void main(String[] args) {
            // insert a bunch of strings
            String[] strings = { "it", "was", "the", "best", "of", "times", "it", "was", "the", "worst" };
    
            IndexMinPQ<String> pq = new IndexMinPQ<String>(strings.length);
            for (int i = 0; i < strings.length; i++) {
                pq.insert(i, strings[i]);
            }
    
            // delete and print each key
            while (!pq.isEmpty()) {
                int i = pq.delMin();
                StdOut.println(i + " " + strings[i]);
            }
            StdOut.println();
    
            // reinsert the same strings
            for (int i = 0; i < strings.length; i++) {
                pq.insert(i, strings[i]);
            }
    
            // print each key using the iterator
            for (int i : pq) {
                StdOut.println(i + " " + strings[i]);
            }
            while (!pq.isEmpty()) {
                pq.delMin();
            }
    
        }
    }
    
    /******************************************************************************
     *  Copyright 2002-2016, Robert Sedgewick and Kevin Wayne.
     *
     *  This file is part of algs4.jar, which accompanies the textbook
     *
     *      Algorithms, 4th edition by Robert Sedgewick and Kevin Wayne,
     *      Addison-Wesley Professional, 2011, ISBN 0-321-57351-X.
     *      http://algs4.cs.princeton.edu
     *
     *
     *  algs4.jar is free software: you can redistribute it and/or modify
     *  it under the terms of the GNU General Public License as published by
     *  the Free Software Foundation, either version 3 of the License, or
     *  (at your option) any later version.
     *
     *  algs4.jar is distributed in the hope that it will be useful,
     *  but WITHOUT ANY WARRANTY; without even the implied warranty of
     *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     *  GNU General Public License for more details.
     *
     *  You should have received a copy of the GNU General Public License
     *  along with algs4.jar.  If not, see http://www.gnu.org/licenses.
     ******************************************************************************/
    IndexMinPQ
  • 相关阅读:
    C语言memmove()函数:复制内存内容(可以处理重叠的内存块)
    boot简介
    MT6753/MT6755 呼吸灯功能添加
    MT6753 使用nt35596s 由于液晶极化出现的闪屏问题解决思路
    MTK平台释疑android M 配置中断相关问题
    MT6755 平台手机皮套驱动实现
    MTK平台 GPU 相关知识
    MTK平台如何定位显示花屏和界面错乱等绘制异常的问题?
    【Python】注释
    【Linux】.gz文件 压缩与解压缩命令
  • 原文地址:https://www.cnblogs.com/sunnyCx/p/8361336.html
Copyright © 2011-2022 走看看