python 实现多进程
参考链接: https://morvanzhou.github.io/tutorials/python-basic/multiprocessing/
python中实现多进程的模块:multiprocessing
注意:在windows系统下,要想启动一个子进程,必须把进程相关的内容写在”if __name__ == “__main__” ”,这句话下面。
具体实现模块
1、Process模块
-
实现功能:
创建子进程
-
构造方法:
Process([group [, target [, name [, args [, kwargs]]]]])
group: 线程组,目前还没有实现,库引用中提示必须是None;
target: 要执行的方法;
name: 进程名;
args/kwargs: 要传入方法的参数。
-
实例方法:
is_alive():返回进程是否在运行。
join([timeout]):阻塞当前上下文环境的进程程,直到调用此方法的进程终止或到达指定的timeout(可选参数)。
start():进程准备就绪,等待CPU调度。
run():strat()调用run方法,如果实例进程时未制定传入target,这star执行t默认run()方法。
terminate():不管任务是否完成,立即停止工作进程。
-
属性:
authkey
daemon:和线程的setDeamon功能一样(将父进程设置为守护进程,当父进程结束时,子进程也结束)。
exitcode(进程在运行时为None、如果为–N,表示被信号N结束)。
name:进程名字。
pid:进程号。
-
例子:
1 import multiprocessing 2 3 def job(a,d): 4 print('aaaaa') 5 6 if __name__ == “__main__”: 7 p1 = multiprocessing.Process(target=job,args=(1,2)) 8 p1.start() 9 p1.join()
2、Pool模块
-
实现功能:
创建管理进程池。提供指定数量的进程供用户调用,当有新的请求提交到pool中时,如果池还没有满,那么就会创建一个新的进程用来执行该请求;但如果池中的进程数已经达到规定最大值,那么该请求就会等待,直到池中有进程结束,才会创建新的进程来执行它。在共享资源时,只能使用Multiprocessing.Manager类,而不能使用Queue或者Array。
-
构造方法:
Pool([processes[, initializer[, initargs[, maxtasksperchild[, context]]]]])
processes :使用的工作进程的数量,如果processes是None那么使用 os.cpu_count()返回的数量。(Pool默认大小是CPU的核数,我们也可以通过在Pool中传入processes参数即可自定义需要的核数量)
initializer: 如果initializer是None,那么每一个工作进程在开始的时候会调用initializer(*initargs)。
maxtasksperchild:工作进程退出之前可以完成的任务数,完成后用一个新的工作进程来替代原进程,来让闲置的资源被释放。maxtasksperchild默认是None,意味着只要Pool存在工作进程就会一直存活。
context: 用在制定工作进程启动时的上下文,一般使用 multiprocessing.Pool() 或者一个context对象的Pool()方法来创建一个池,两种方法都适当的设置了context。
-
实例方法:
apply_async(func[, args[, kwds[, callback]]]) 它是非阻塞。
apply(func[, args[, kwds]])是阻塞的。
close() 关闭pool,使其不在接受新的任务。
terminate() 关闭pool,结束工作进程,不在处理未完成的任务。
join() 主进程阻塞,等待子进程的退出, join方法要在close或terminate之后使用。
-
Pool使用方法:
1、Pool+map函数
- 用map()获取结果,在map()中需要放入函数和需要迭代运算的值,然后它会自动分配给CPU核,返回结果。
- 说明:此写法缺点在于只能通过map向函数传递一个参数。
1 from multiprocessing import Pool 2 3 def test(i): 4 print i 5 6 if __name__=="__main__": 7 lists=[1,2,3] 8 pool=Pool(processes=2) #定义最大的进程数 9 pool.map(test,lists) #lists必须是一个可迭代变量。 10 pool.close() 11 pool.join()
2、异步进程池(非阻塞)
- apply_async()只能放入一组参数,并返回一个结果,如果想得到map()的效果需要通过迭代。
1 from multiprocessing import Pool 2 3 def test(i): 4 print i 5 6 if __name__=="__main__": 7 pool = Pool(processes=10) 8 for i in xrange(500): 9 ''' 10 For循环中执行步骤: 11 (1)循环遍历,将500个子进程添加到进程池(相对父进程会阻塞) 12 (2)每次执行10个子进程,等一个子进程执行完后,立马启动新的子进程。(相对父进程不阻塞) 13 apply_async为异步进程池写法。 14 异步指的是启动子进程的过程,与父进程本身的执行(print)是异步的,而For循环中往进程池添加子进程的过程,与父进程本身的执行却是同步的。 15 ''' 16 pool.apply_async(test, args=(i,)) #维持执行的进程总数为10,当一个进程执行完后启动一个新进程. 17 print“test” 18 pool.close() 19 pool.join()
代码说明:
执行顺序:For循环内执行了2个步骤,第一步:将500个对象放入进程池(阻塞)。第二步:同时执行10个子进程(非阻塞),有结束的就立即添加,维持10个子进程运行。(apply_async方法的会在执行完for循环的添加步骤后,直接执行后面的print语句,而apply方法会等所有进程池中的子进程运行完以后再执行后面的print语句)
注意:调用join之前,先调用close或者terminate方法,否则会出错。执行完close后不会有新的进程加入到pool,join函数等待所有子进程结束。
3、同步进程池(阻塞)
1 from multiprocessing import Pool 2 3 def test(p): 4 print p 5 time.sleep(3) 6 7 if __name__=="__main__": 8 pool = Pool(processes=10) 9 for i in xrange(500): 10 ''' 11 实际测试发现,for循环内部执行步骤: 12 (1)遍历500个可迭代对象,往进程池放一个子进程 13 (2)执行这个子进程,等子进程执行完毕,再往进程池放一个子进程,再执行。(同时只执行一个子进程) 14 for循环执行完毕,再执行print函数。 15 ''' 16 pool.apply(test, args=(i,)) #维持执行的进程总数为10,当一个进程执行完后启动一个新进程. 17 print“test” 18 pool.close() 19 pool.join()
代码说明:
for循环内执行的步骤顺序,往进程池中添加一个子进程,执行子进程,等待执行完毕再添加一个子进程…..等500个子进程都执行完了,再执行print “test”。(从结果来看,并没有多进程并发
3、Queue模块
-
实现功能:
将每个核或线程的运算结果放在队列中,等到每个线程或核运行完毕后再从队列中取出结果, 继续加载运算。原因很简单, 多线程调用的函数不能有返回值, 所以使用Queue存储多个线程运算的结果。
-
例子:
1 import multiprocessing as mp 2 3 def job(q): 4 res=0 5 for i in range(1000): 6 res+=i+i**2+i**3 7 q.put(res) #queue 8 9 if __name__=='__main__': 10 q = mp.Queue() 11 p1 = mp.Process(target=job,args=(q,)) 12 p2 = mp.Process(target=job,args=(q,)) 13 p1.start() 14 p2.start() 15 p1.join() 16 p2.join() 17 res1 = q.get() 18 res2 = q.get() 19 print(res1+res2)
4、Pipe模块
-
实现功能:
用来管道操作。
5、Manager模块
-
实现功能:
Manager模块常与Pool模块一起使用,作用是共享资源。
6、Lock模块(进程锁)
-
实现功能:
当多个进程需要访问共享资源的时候,Lock可以用来避免访问的冲突。
-
实现步骤:
1)首先需要定义一个进程锁
l = multiprocessing.Lock() # 定义一个进程锁
2)然后将进程锁的信息传入各个进程中
p1 = multiprocessing.Process(target=job, args=(v,1,l)) # 需要将Lock传入
p2 = multiprocessing.Process(target=job, args=(v,3,l))
3)在job()中设置进程锁的使用,保证运行时一个进程的对锁内内容的独占
-
例子:
1 import multiprocessing as mp 2 3 def job(v, num, l): 4 l.acquire() # 锁住 5 for _ in range(5): 6 time.sleep(0.1) 7 v.value += num # 获取共享内存 8 print(v.value) 9 l.release() # 释放 10 11 def multicore(): 12 l = mp.Lock() # 定义一个进程锁 13 v = mp.Value('i', 0) # 定义共享内存 14 p1 = mp.Process(target=job, args=(v,1,l)) # 需要将lock传入 15 p2 = mp.Process(target=job, args=(v,3,l)) 16 p1.start() 17 p2.start() 18 p1.join() 19 p2.join() 20 21 if __name__ == '__main__': 22 multicore()
共享内存
Multiprocessing类中共享资源可以使用3种方式,分别是Queue,Array,Manager。
1、Queue类
使用Multiprocessing.Queue类,共享资源(share memory)(只适用Process类,不能再Pool进程池中使用)
1 from multiprocessing import Process, Queue 2 3 def test(queue): 4 queue.put("Hello World") 5 6 if __name__ == '__main__': 7 q = Queue() 8 p = Process(target=test, args=(q,)) #需要将q对象传递给子进程 9 p.start() 10 Print q.get()
2、Array、Value类
使用Multiprocessing.Array类,共享资源(share memory)(只适用于Process类,无法与Pool一起使用)
1 from multiprocessing import Process, Array 2 3 def test(a): 4 for i in range(len(a)): 5 a[i] = -a[i] 6 7 if__name__ == '__main__': 8 arr = Array('i', range(10)) 9 p = Process(target=test, args=(arr)) #需要将arr对象传递给子进程 10 p.start() 11 p.join() 12 print arr[:]
-
单值:Value
我们可以通过使用Value数据存储在一个共享的内存表中。
1 import multiprocessing as mp 2 value1 = mp.Value('i', 0) 3 value2 = mp.Value('d', 3.14) 4 5 # 其中d和i参数用来设置数据类型的,d表示一个双精浮点类型,i表示一个带符号的整型。
-
列表:Array
在Python的mutiprocessing中,有还有一个Array类,可以和共享内存交互,来实现在进程之间共享数据。
1 array = mp.Array('i', [1, 2, 3, 4]) 2 3 #这里的Array和numpy中的不同,它只能是一维的,不能是多维的。同样和Value 一样,需要定义数据形式,否则会报错。
3、Manager类
使用Multiprocessing.Manager类,共享资源。(可以适用Pool类)
实例目的:父进程在执行子进程的过程中,同步判断一个公共资源值,如果满足条件则结束所有进程。
1 from multiprocessing import Manager 2 3 def test(i,lists): 4 print i 5 lists.append(i) 6 7 if __name__=="__main__": 8 pool=Pool() 9 lists=Manager().list() #Manager类实例化代码只能写在main()函数里面 10 for i in xrange(10000000): 11 if len(lists)<=0: 12 ''' 13 在创建子进程时,需要将lists对象传入,不然无法共享。 14 ''' 15 pool.apply_async(test,args=(i,lists))##需要将lists对象传递给子进程,这里比较耗资源,原因可能是因为Manager类是基于通信的。 16 else: 17 break
- 父进程中的全局变量能被子进程共享吗?
解答:不行,因为每个进程享有独立的内存数据,如果想要共享资源,可以使用Manage类,或者Queue等模块。