Given a 2D binary matrix filled with 0's and 1's, find the largest rectangle containing all ones and return its area.
题解,很巧妙的一道题,对于一个0-1矩阵,它的每一行及以上都可以看作一个直方图(如下图所示),利用Largest Rectangle in Histogram的方法,可以在O(n)的时间搜索出这一行及以上的直方图中面积最大的矩形,对矩阵的每一行依次做这个操作,就可以在O(n2)的时间搜索出最大的矩形了。
将原矩阵转换成直方图矩阵的方法:设用transfer矩阵存放转换后的直方图,则
transfer[0][j] = matrix[0][j] - '0';
transfer[i][j] = (matrix[i][j] == '0' ? 0: transfer[i-1][j] + 1); (i >= 1)
代码如下:
1 public class Solution { 2 public int largestRectangleArea(int[] height) { 3 if(height == null || height.length == 0) 4 return 0; 5 Stack<Integer> index = new Stack<Integer>(); 6 int totalMax = 0; 7 ArrayList<Integer> newHeight = new ArrayList<Integer>(); 8 for(int i:height) newHeight.add(i); 9 newHeight.add(0); 10 11 12 for(int i = 0;i < newHeight.size();i++){ 13 if(index.isEmpty() || newHeight.get(i) >= newHeight.get(index.peek())) 14 index.push(i); 15 else{ 16 int top = index.pop(); 17 totalMax = Math.max(totalMax,newHeight.get(top) * (index.isEmpty()?i:i-index.peek()-1)); 18 i--; 19 } 20 } 21 22 return totalMax; 23 } 24 public int maximalRectangle(char[][] matrix) { 25 if(matrix == null || matrix.length == 0) 26 return 0; 27 int m = matrix.length; 28 int n = matrix[0].length; 29 int totalMax = 0; 30 int[][] transfer = new int[m][n]; 31 32 //transform matrix to histogram in a new matrix 33 for(int i = 0;i < n;i++) 34 transfer[0][i] = matrix[0][i]- '0'; 35 for(int i = 1;i < m;i++){ 36 for(int j = 0;j < n;j++){ 37 if(matrix[i][j] == '0' ) 38 transfer[i][j] = 0; 39 else { 40 transfer[i][j] = transfer[i-1][j] + 1; 41 } 42 } 43 } 44 45 //Using histogram to find the biggest rectangle 46 for(int i = 0;i < m;i++){ 47 totalMax = Math.max(totalMax, largestRectangleArea(transfer[i])); 48 } 49 50 return totalMax; 51 } 52 }