zoukankan      html  css  js  c++  java
  • 【leetcode刷题笔记】Median of Two Sorted Arrays

    There are two sorted arrays A and B of size m and n respectively. Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)).


    题解:注意这里对median的理解,如果A,B合并后的序列有奇数个元素,那么中间元素就是下标为(a.length+b.length)/2的元素;而如果合并后的序列有偶数个元素,那么median是下标为(a.length+b.length)/2和(a.length+b.length)/2-1两个元素的平均数。

    我们实现一个二分在有序两个数组中找第k小的数的函数,然后在主函数中,根据合并后数组元素个数的奇偶性调用这个函数。

    首先来看这个在两个有序数组中找第k小的数的函数 private double findKth(int a[],int b[],int k,int a_start,int b_start){ 。它的原理如下图所示:

    即:

    if(a_mid < b_mid)
        return findKth(a, b, k-k/2, a_start+k/2, b_start);
    else
        return findKth(a, b, k-k/2, a_start, b_start+k/2);

    再来看求解函数 public double findMedianSortedArrays(int A[], int B[]) ,当A和B合并后元素个数为奇数的时候,我们直接调用 findKth(A, B, (B.length+A.length)/2+1, 0, 0) 找到第(A.length+B.length)/2的数就是中位数了。而当A和B的合并后元素个数为偶数的时候,我们要调用两次findKth分别找到第(A.length+B.length)/2和第(A.length+B.length)/2-1的数,然后求它们的平均数,即 (findKth(A, B, (A.length+B.length)/2, 0, 0) + findKth(A, B, (A.length+B.length)/2+1, 0, 0)) / 2.0 。

    代码如下:

     1 public class Solution {
     2     private double findKth(int a[],int b[],int k,int a_start,int b_start){
     3         //if a is empty
     4         if(a_start >= a.length)
     5             return b[b_start+k-1];
     6         if(b_start >= b.length)
     7             return a[a_start+k-1];
     8         
     9         if(k == 1)
    10             return Math.min(a[a_start], b[b_start]);
    11         
    12         int a_mid = a_start + k/2 -1 < a.length?a[a_start+k/2-1]:Integer.MAX_VALUE;
    13         int b_mid = b_start + k/2 -1 < b.length?b[b_start+k/2-1]:Integer.MAX_VALUE;
    14         
    15         if(a_mid < b_mid){
    16             return findKth(a, b, k-k/2, a_start+k/2, b_start);
    17         }
    18         else
    19             return findKth(a, b, k-k/2, a_start, b_start+k/2);
    20         
    21     }
    22     public double findMedianSortedArrays(int A[], int B[]) {
    23         int len = A.length + B.length;
    24         if(len % 2 == 0)
    25             return (findKth(A, B, len/2, 0, 0) + findKth(A, B, len/2+1, 0, 0)) / 2.0;
    26         else
    27             return findKth(A, B, len/2+1, 0, 0);
    28     }
    29 }
  • 相关阅读:
    What Solutions Does the Resource Manager Provide for Workload Management?
    Oracle Managed Files,OMF
    Client Result Cache
    Performing a Quick Tune
    [转]Oracle DB 通过SQL 优化管理性能
    [转]闪回数据归档
    Building SQL Test Cases
    性能测试
    python--递归函数、匿名函数、嵌套函数、高阶函数、装饰器、生成器、迭代器
    python--可变长参数(*args、**kwargs)、返回值(return)
  • 原文地址:https://www.cnblogs.com/sunshineatnoon/p/3870328.html
Copyright © 2011-2022 走看看