zoukankan      html  css  js  c++  java
  • python 高级特性

    迭代

    字符串,元组,列表和字典都是可迭代的,使用下面的方法可以判定一个变量是否是可迭代的

    >>> from collections import Iterable
    >>> isinstance('abc', Iterable) # str是否可迭代
    True

    列表生成器

    对于需要迭代生成列表的形式可以改为使用一个语句实现

    例如

    >>> L = []
    >>> for x in range(1, 11):
    ...   L.append(x * x)
    ...
    >>> L
    [1, 4, 9, 16, 25, 36, 49, 64, 81, 100

    可以改为

    >>> [x * x for x in range(1, 11)]
    [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

    它的方法就是在一个[]内加入语句,将for...in内部的语句加到for的前面就可以实现,并且可以加不止一个for...in语句

    >>> [x * x for x in range(1, 11) if x % 2 == 0]
    [4, 16, 36, 64, 100]

    >>> [m + n for m in 'ABC' for n in 'XYZ']
    ['AX', 'AY', 'AZ', 'BX', 'BY', 'BZ', 'CX', 'CY', 'CZ']

    生成器

    通过列表生成式,我们可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器(Generator)。
    要创建一个generator,有很多种方法。

    第一种方法很简单,只要把一个列表生成式的[]改成(),就创建了一个generator:

    >>> L = [x * x for x in range(10)]
    >>> L
    [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
    >>> g = (x * x for x in range(10))
    >>> g
    <generator object <genexpr> at 0x104feab40>

    generator保存的是算法,每次调用next(),就计算出下一个元素的值,直到计算到最后一个元素,没有更多的元素时,抛出StopIteration的错误。
    当然,上面这种不断调用next()方法实在是太变态了,正确的方法是使用for循环,因为generator也是可迭代对象:

    >>> g = (x * x for x in range(10))
    >>> for n in g:
    ... print n
    ...
    0
    1
    4
    9
    16
    25
    36
    49
    64
    81

    所以,我们创建了一个generator后,基本上永远不会调用next()方法,而是通过for循环来迭代它。
    generator非常强大。如果推算的算法比较复杂,用类似列表生成式的for循环无法实现的时候,还可以用函数来实现。
    比如,著名的斐波拉契数列(Fibonacci),除第一个和第二个数外,任意一个数都可由前
    两个数相加得到:1, 1, 2, 3, 5, 8, 13, 21, 34, ...
    斐波拉契数列用列表生成式写不出来,但是,用函数把它打印出来却很容易:

    def fib(max):
       n, a, b = 0, 0, 1
       while n < max:
          print b
         a, b = b, a + b
         n = n + 1

    上面的函数可以输出斐波那契数列的前N个数:
    >>> fib(6)
    1
    1
    2
    3
    5
    8
    仔细观察,可以看出,fib函数实际上是定义了斐波拉契数列的推算规则,可以从第一个元素开始,推算出后续任意的元素,这种逻辑其实非常类似generator。也就是说,上面的函数和generator仅一步之遥。要把fib函数变成generator,只需要把print b改为yield b就可以了:

    def fib(max):
        n, a, b = 0, 0, 1
        while n < max:
            yield b
            a, b = b, a + b
            n = n + 1        

    这就是定义generator的另一种方法。如果一个函数定义中包含yield关键字,那么这个函数就不再是一个普通函数,而是一个generator:
    >>> fib(6)
    <generator object fib at 0x104feaaa0>

    这里,最难理解的就是generator和函数的执行流程不一样。函数是顺序执行,遇到return语句或者最后一行函数语句就返回。而变成generator的函数,在每次调用next()的时候执行,遇到yield语句返回,再次执行时从上次返回的yield语句处继续执行。
    我们在循环过程中不断调用yield,就会不断中断。当然要给循环设置一个条件来退出循环,不然就会产生一个无限数列出来。
    同样的,把函数改成generator后,我们基本上从来不会用next()来调用它,而是直接使用for循环来迭代:

    >>> for n in fib(6):
    ...     print n
    ...
    1
    1
    2
    3
    5
    8    

    匿名函数

    匿名函数lambda x: x * x实际上就是:
    def f(x):
      return x * x
    关键字lambda表示匿名函数,冒号前面的x表示函数参数。匿名函数有个限制,就是只能有一个表达式,不用写return,返回值就是该表达式的结果。用匿名函数有个好处,因为函数没有名字,不必担心函数名冲突。此外,匿名函数也是一个函数对象,也可以把匿名函数赋值给一个变量,再利用变量来调用该函数:
    >>> f = lambda x: x * x
    >>> f
    <function <lambda> at 0x10453d7d0>
    >>> f(5)
    25

    装饰器

    假设我们要增强now()函数的功能,比如,在函数调用前后自动打印日志,但又不希望修改now()函数的定义,这种在代码运行期间动态增加功能的方式,称之为“装饰器”(Decorator)。本质上,decorator就是一个返回函数的高阶函数。

  • 相关阅读:
    SpringBoot入门教程(十六)@Autowired、@Inject、@Resource
    SpringBoot入门教程(十五)集成Druid
    SpringBoot入门教程(十四)导出Excel
    SpringBoot入门教程(十三)CORS方式实现跨域
    SpringBoot入门教程(十二)DevTools热部署
    SpringBoot入门教程(十一)过滤器和拦截器
    1 谷歌book初始化配置-开启开发者模式
    47 VNC远程桌面
    46 温湿度传感器 dh11
    博士毕业要求
  • 原文地址:https://www.cnblogs.com/suntp/p/6485324.html
Copyright © 2011-2022 走看看