zoukankan      html  css  js  c++  java
  • Card Collector(HDU 4336)

    Card Collector

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 3001    Accepted Submission(s): 1435
    Special Judge


    Problem Description
    In your childhood, do you crazy for collecting the beautiful cards in the snacks? They said that, for example, if you collect all the 108 people in the famous novel Water Margin, you will win an amazing award. 

    As a smart boy, you notice that to win the award, you must buy much more snacks than it seems to be. To convince your friends not to waste money any more, you should find the expected number of snacks one should buy to collect a full suit of cards.
     
    Input
    The first line of each test case contains one integer N (1 <= N <= 20), indicating the number of different cards you need the collect. The second line contains N numbers p1, p2, ..., pN, (p1 + p2 + ... + pN <= 1), indicating the possibility of each card to appear in a bag of snacks. 

    Note there is at most one card in a bag of snacks. And it is possible that there is nothing in the bag.
     
    Output
    Output one number for each test case, indicating the expected number of bags to buy to collect all the N different cards.

    You will get accepted if the difference between your answer and the standard answer is no more that 10^-4.
     
    Sample Input
    1 0.1 2 0.1 0.4
     
    Sample Output
    10.000 10.500
     
    Source
     
    Recommend
    zhoujiaqi2010

     求期望

    方法一:状压

    逆序枚举所有状态 d[i] 表示状态为i时收集完所有卡片的期望步数。

    d[i] = 1 + ∑(d[i | (1 << j)] * p[j])(ps: 累加所有走一步会增加新一张卡片的期望步数) + (1 - t) * d[i](ps: t为增加一张新卡片的概率);

    #include <cstdio>
    #include <iostream>
    #include <sstream>
    #include <cmath>
    #include <cstring>
    #include <cstdlib>
    #include <string>
    #include <vector>
    #include <map>
    #include <set>
    #include <queue>
    #include <stack>
    #include <algorithm>
    using namespace std;
    #define ll long long
    #define _cle(m, a) memset(m, a, sizeof(m))
    #define repu(i, a, b) for(int i = a; i < b; i++)
    #define MAXN (1 << 20)
    
    double d[MAXN + 1];
    double p[25];
    int main()
    {
        int n;
        while(~scanf("%d", &n))
        {
           memset(d, 0, sizeof(d));
           repu(i, 0, n) scanf("%lf", &p[i]);
           if((1 << n) - 1) d[(1 << n) - 1] = 0.0;
           double t;
           for(int i = (1 << n) - 2; i >= 0; i--)
           {
               d[i] += 1.0;
               t = 0.0;
               for(int j = 0; j < n; j++)
                  if(!(i & (1 << j))) {
                    d[i] += p[j] * d[i | (1 << j)];
                    t += p[j];
                  }
               d[i] /= t;
           }
           printf("%.4lf
    ", d[0]);
        }
    
        return 0;
    }
    View Code

     方法二:容斥

    设Ai表示取到第i张卡片的期望,Ai = 1 / pi;

    由容斥原理得:

    #include <cstdio>
    #include <iostream>
    #include <sstream>
    #include <cmath>
    #include <cstring>
    #include <cstdlib>
    #include <string>
    #include <vector>
    #include <map>
    #include <set>
    #include <queue>
    #include <stack>
    #include <algorithm>
    using namespace std;
    #define ll long long
    #define _cle(m, a) memset(m, a, sizeof(m))
    #define repu(i, a, b) for(int i = a; i < b; i++)
    #define MAXN (1<<20)
    
    double p[25];
    double d[MAXN + 1];
    int main()
    {
        int n;
        while(~scanf("%d", &n))
        {
            double re = 0.0;
            repu(i, 0, n) scanf("%lf", &p[i]);
            int m = 0;
            double t = 0.0;
            repu(i, 1, (1 << n)) {
               m = 0, t = 0.0;
               repu(j, 0, n) if(i & (1 << j)) t += p[j], m++;
               if(m & 1) re += 1.0 / t;
               else      re -= 1.0 / t;
            }
            printf("%.4lf
    ", re);
        }
        return 0;
    }
    View Code
  • 相关阅读:
    Blazor server VS Blazor WebAssembly
    DataTable 差集Except、交集Intersect、并集Union
    Power BI Anomaly Detection
    Power BI智能叙述
    Configure the Secure Store Service in SharePoint Server
    小批量excel数据导入oracle
    python批量写入oracle
    centos7安装java,配置的环境变量不生效 -bash: java: command not found
    nebula docker三件套组件版本问题
    shell删除指定行
  • 原文地址:https://www.cnblogs.com/sunus/p/4445187.html
Copyright © 2011-2022 走看看