zoukankan      html  css  js  c++  java
  • uva 1631

    1631 Locker

    A password locker with N digits, each digit can be rotated to 0-9 circularly.

    You can rotate 1-3 consecutive digits up or down in one step.

    For examples:

    567890 → 567901 (by rotating the last 3 digits up)

    000000 → 000900 (by rotating the 4th digit down)

    Given the current state and the secret password, what is the minimum amount of steps you have to rotate the locker in order to get from current state to the secret password?

    Input

    Multiple (less than 50) cases, process to EOF.

    For each case, two strings with equal length (≤ 1000) consists of only digits are given, representing the current state and the secret password, respectively.

    Output

    For each case, output one integer, the minimum amount of steps from the current state to the secret password.

    Sample Input

    111111 222222

    896521 183995

    Sample Output

    2

    12

    记忆化搜索

    从第一个开始,枚举向上或向下转1个,2个,3个的情况,然后记忆化搜索,注意最后一个字符在处理时要使第n + 1,n + 2个的初始和末状态相同。

    #include <cstdio>
    #include <iostream>
    #include <sstream>
    #include <cmath>
    #include <cstring>
    #include <cstdlib>
    #include <string>
    #include <vector>
    #include <map>
    #include <set>
    #include <queue>
    #include <stack>
    #include <algorithm>
    using namespace std;
    #define INF 100000
    #define ll long long
    #define _cle(m, a) memset(m, a, sizeof(m))
    #define repu(i, a, b) for(int i = a; i < b; i++)
    #define MAXN 1005
    char sa[MAXN], sb[MAXN];
    int a[MAXN], b[MAXN];
    int d[MAXN][10][10];
    int n;
    
    int up(int s, int t)
    {
        if(s <= t) return t - s;
        return (10 + t - s);
    }
    
    int down(int s, int t)
    {
        if(s >= t) return s - t;
        return (10 + s - t);
    }
    
    int dp(int d1, int d2, int d3)
    {
        if(d1 >= n) return 0;
        if(d[d1][d2][d3] != -1) return d[d1][d2][d3];
        int t, minn = INF;
        t = up(d2, b[d1]);
        repu(i, 0, t + 1)
          repu(j, i, t + 1)
           minn = min(minn, dp(d1 + 1, (d3 + j) % 10, (a[d1 + 2] + i) % 10) + t);
        t = down(d2, b[d1]);
        repu(i, 0, t + 1)
          repu(j, i, t + 1)
           minn = min(minn, dp(d1 + 1, (d3 - j + 10) % 10, (a[d1 + 2] - i + 10) % 10) + t);
        return d[d1][d2][d3] = minn;
    }
    
    int main()
    {
        while(~scanf("%s%s", sa, sb))
        {
            n = strlen(sa);
            repu(i, 0, n) a[i] = sa[i] - '0';
            repu(i, 0, n) b[i] = sb[i] - '0';
            a[n] = a[n + 1] = b[n] = b[n + 1] = 0;
    
            _cle(d, -1);
            printf("%d
    ", dp(0, a[0], a[1]));
        }
        return 0;
    }
    View Code
  • 相关阅读:
    MCV 和 MTV框架基本信息
    Django的一些操作与视图函数
    Django模板渲染
    python--jQuery
    MEF初体验之五:Lazy Exports
    MEF初体验之四:Imports声明
    MEF初体验之三:Exports声明
    MEF初体验之二:定义组合部件和契约
    MEF初体验之一:在应用程序宿主MEF
    WPF学习(12)动画
  • 原文地址:https://www.cnblogs.com/sunus/p/4507362.html
Copyright © 2011-2022 走看看