zoukankan      html  css  js  c++  java
  • Codeforces Round #323 (Div. 2) C. GCD Table

    C. GCD Table

    Time Limit: 1 Sec  

    Memory Limit: 256 MB

    题目连接

    http://codeforces.com/contest/583/problem/C

    Description

    The GCD table G of size n × n for an array of positive integers a of length n is defined by formula

    Let us remind you that the greatest common divisor (GCD) of two positive integers x and y is the greatest integer that is divisor of both xand y, it is denoted as . For example, for array a = {4, 3, 6, 2} of length 4 the GCD table will look as follows:

    Given all the numbers of the GCD table G, restore array a.

    Input

    The first line contains number n (1 ≤ n ≤ 500) — the length of array a. The second line contains n2 space-separated numbers — the elements of the GCD table of G for array a.

    All the numbers in the table are positive integers, not exceeding 109. Note that the elements are given in an arbitrary order. It is guaranteed that the set of the input data corresponds to some array a.

    Output

    In the single line print n positive integers — the elements of array a. If there are multiple possible solutions, you are allowed to print any of them.

    Sample Input

    4
    2 1 2 3 4 3 2 6 1 1 2 2 1 2 3 2
    1
    42
    2
    1 1 1 1

    Sample Output

    4 3 6 2
    42
    1 1


        这道题当时猜了好久的规律,然而却与真相擦肩而过。。。
       题意: 由n个数,可以构成n*n的gcd矩阵,给你n*n个数,表示这个n*n矩阵的元素(是任意顺序的),要求找到这n个数,满足这个gcd矩阵(解不唯一)。
       思路:抓住一点,最大数一定为解。
    #include <cstdio>
    #include <iostream>
    #include <sstream>
    #include <cmath>
    #include <cstring>
    #include <cstdlib>
    #include <string>
    #include <vector>
    #include <map>
    #include <set>
    #include <queue>
    #include <stack>
    #include <algorithm>
    using namespace std;
    #define ll long long
    #define _cle(m, a) memset(m, a, sizeof(m))
    #define repu(i, a, b) for(int i = a; i < b; i++)
    #define repd(i, a, b) for(int i = b; i >= a; i--)
    #define sfi(n) scanf("%d", &n)
    #define pfi(n) printf("%d
    ", n)
    #define pfi3(a, b, c) printf("%d %d : %d
    ", a, b, c)
    #define MAXN 505
    #include<iostream>
    #include<stdio.h>
    #include<queue>
    #include<map>
    #include<algorithm>
    using namespace std;
    
    int gcd(int a, int b)
    {
        return b == 0 ? a : gcd(b, a % b);
    }
    
    int a[MAXN * MAXN];
    map<int, int> H;
    vector<int> ans;
    int main()
    {
        int n;
        sfi(n);
        int t = n * n + 1;
        repu(i, 1, t)
        {
            sfi(a[i]);
            H[a[i]]++;
        }
        sort(a + 1, a + n * n + 1);
        for(int i = t - 1; i > 0; i--)
        {
            if(!H[a[i]])
                continue;
            H[a[i]]--;
            int siz = ans.size();
            repu(j, 0, siz)
                H[gcd(ans[j], a[i])] -= 2;
            ans.push_back(a[i]);
        }
        repu(i, 0, n)
        if(!i) printf("%d", ans[i]);
        else printf(" %d", ans[i]);
        puts("");
    }
    View Code
     
  • 相关阅读:
    Java8新特性一览表
    FastDFS 单机部署指南
    EntityManager的Clear方法的使用
    元类
    python中的函数的分类
    python中的多任务
    正则表达式
    GIL和copy
    文件管理
    logging日志模块配置
  • 原文地址:https://www.cnblogs.com/sunus/p/4854240.html
Copyright © 2011-2022 走看看