zoukankan      html  css  js  c++  java
  • 神经网络介绍:梯度下降和正则化

    一、梯度下降

    梯度下降公式:$W^{[l]} = W^{[l]} - alpha ext{ } dW^{[l]}$,$b^{[l]} = b^{[l]} - alpha ext{ } db^{[l]}$,具体细节和代码实现参考文章神经网络介绍:算法基础

    (Batch) Gradient Descent

    ### 伪代码
    X = data_input
    Y = labels
    parameters = initialize_parameters(layers_dims)
    for i in range(0, num_epochs):
        # Forward propagation
        a, caches = forward_propagation(X, parameters)
        # Compute cost.
        cost = compute_cost(a, Y)
        # Backward propagation.
        grads = backward_propagation(a, caches, parameters)
        # Update parameters.
        parameters = update_parameters(parameters, grads)
    View Code

    Stochastic Gradient Descent

    ### 伪代码
    X = data_input
    Y = labels
    parameters = initialize_parameters(layers_dims)
    for i in range(0, num_epochs):
        for j in range(0, m):
            # Forward propagation
            a, caches = forward_propagation(X[:,j], parameters)
            # Compute cost
            cost = compute_cost(a, Y[:,j])
            # Backward propagation
            grads = backward_propagation(a, caches, parameters)
            # Update parameters.
            parameters = update_parameters(parameters, grads)
    View Code

    Mini-Batch Gradient Descent

    Mini-Batch Gradient Descent介于(Batch) Gradient Descent和Stochastic Gradient Descent之间,可分为两步进行:

    1. Build mini-batches from the training set (X, Y)
      def random_mini_batches(X, Y, mini_batch_size = 64, seed = 0):
          """
          Creates a list of random minibatches from (X, Y)
      
          Arguments:
          X -- input data, of shape (number of features, number of examples)
          Y -- true label vector, of shape (1, number of examples)
          mini_batch_size -- size of the mini-batches, integer
      
          Returns:
          mini_batches -- list of synchronous (mini_batch_X, mini_batch_Y)
          """
          np.random.seed(seed)
          m = X.shape[1]   #number of training examples
          mini_batches = []    
          # Step 1: Shuffle (X, Y)
          permutation = list(np.random.permutation(m))
          shuffled_X = X[:, permutation]
          shuffled_Y = Y[:, permutation].reshape((1,m))
          # Step 2: Partition (shuffled_X, shuffled_Y). Minus the end case.
          num_complete_minibatches = math.floor(m/mini_batch_size) # number of mini batches of size mini_batch_size
          for k in range(0, num_complete_minibatches):
              mini_batch_X = shuffled_X[:,k*mini_batch_size:(k+1)*mini_batch_size]
              mini_batch_Y = shuffled_Y[0,k*mini_batch_size:(k+1)*mini_batch_size].reshape((1,mini_batch_size))
              mini_batch = (mini_batch_X, mini_batch_Y)
              mini_batches.append(mini_batch)   
          # Handling the end case (last mini-batch < mini_batch_size)
          if m % mini_batch_size != 0:
              mini_batch_X = shuffled_X[:,num_complete_minibatches*mini_batch_size:]
              mini_batch_Y = shuffled_Y[0,num_complete_minibatches*mini_batch_size:].reshape((1,m % mini_batch_size))
              mini_batch = (mini_batch_X, mini_batch_Y)
              mini_batches.append(mini_batch)
          return mini_batches
      View Code
    2. Train the network
      ### 伪代码
      X = data_input
      Y = labels
      parameters = initialize_parameters(layers_dims)
      minibatches = random_mini_batches(X, Y)
      for i in range(0, num_epochs):
          for minibatch in minibatches:
              # Select a minibatch
              (minibatch_X, minibatch_Y) = minibatch
              # Forward propagation
              a, caches = forward_propagation(minibatch_X, parameters)
              # Compute cost
              cost = compute_cost(a, minibatch_Y)
              # Backward propagation
              grads = backward_propagation(a, caches, parameters)
              # Update parameters.
              parameters = update_parameters(parameters, grads)
      View Code

    梯度下降、随机梯度下降与mini-batch梯度下降的区别在于进行一次参数更新所使用的训练样本数量。梯度下降一次更新需使用全部样本,计算效率较低;随机梯度下降一次更新仅使用一个样本,计算效率较高,但在过程中会产生较剧烈的震荡,影响最终的优化结果;mini-batch梯度下降则介于梯度下降和随机梯度下降两者之间,若选取合适的mini_batch_size,mini-batch梯度下降常优于梯度下降和随机梯度下降,特别是当训练数据集很大的情况下。

    为进一步减少训练过程中不必要的震荡(如上图所示),加快收敛速度,并且尽可能地避免落入局部最优值,有一些改进的算法可供选择:

    Momentum

    $$ egin{cases}
    v_{dW^{[l]}} = eta v_{dW^{[l]}} + (1 - eta) dW^{[l]} \
    W^{[l]} = W^{[l]} - alpha v_{dW^{[l]}}
    end{cases} ext{ and }egin{cases}
    v_{db^{[l]}} = eta v_{db^{[l]}} + (1 - eta) db^{[l]} \
    b^{[l]} = b^{[l]} - alpha v_{db^{[l]}}
    end{cases}$$

    RMSProp

    $$egin{cases}
    s_{dW^{[l]}} = eta s_{dW^{[l]}} + (1 - eta) {dW^{[l]}}^2 \
    W^{[l]} = W^{[l]} - alpha frac{dW^{[l]}}{sqrt{s_{dW^{[l]}}} + varepsilon}
    end{cases} ext{ and }egin{cases}
    s_{db^{[l]}} = eta s_{db^{[l]}} + (1 - eta) {db^{[l]}}^2 \
    b^{[l]} = b^{[l]} - alpha frac{db^{[l]}}{sqrt{s_{db^{[l]}}} + varepsilon}
    end{cases}$$

    Adam

    $$egin{cases}
    v_{dW^{[l]}} = eta_1 v_{dW^{[l]}} + (1 - eta_1) dW^{[l]} \
    v^{corrected}_{dW^{[l]}} = frac{v_{dW^{[l]}}}{1 - (eta_1)^t} \
    s_{dW^{[l]}} = eta_2 s_{dW^{[l]}} + (1 - eta_2) {dW^{[l]}}^2 \
    s^{corrected}_{dW^{[l]}} = frac{s_{dW^{[l]}}}{1 - (eta_2)^t} \
    W^{[l]} = W^{[l]} - alpha frac{v^{corrected}_{dW^{[l]}}}{sqrt{s^{corrected}_{dW^{[l]}}} + varepsilon}
    end{cases} ext{ and }egin{cases}
    v_{db^{[l]}} = eta_1 v_{db^{[l]}} + (1 - eta_1) db^{[l]} \
    v^{corrected}_{db^{[l]}} = frac{v_{db^{[l]}}}{1 - (eta_1)^t} \
    s_{db^{[l]}} = eta_2 s_{db^{[l]}} + (1 - eta_2) {db^{[l]}}^2 \
    s^{corrected}_{db^{[l]}} = frac{s_{db^{[l]}}}{1 - (eta_2)^t} \
    b^{[l]} = b^{[l]} - alpha frac{v^{corrected}_{db^{[l]}}}{sqrt{s^{corrected}_{db^{[l]}}} + varepsilon}
    end{cases}, ext{ }其中t表示迭代次数$$

    以上算法中的学习率$alpha$可以是常数,也可以根据训练进度而变化,常用的几种方法有: 

    Learning Rate Decay

                  有多种形式,例如$frac{alpha_0}{1+decay\_rate*epoch\_number}$,$alpha_0$为初始学习率

    Cyclic Learning Rates

                  有多种形式,例如下图所示

    二、正则化

    L2(Weight Decay)

                 以二分类问题为例,使用L2正则化后的损失函数为:

    $$mathcal{J}=underbrace{-frac{1}{m} sumlimits_{i = 1}^{m} [y^{(i)}logleft(a^{[L] (i)} ight) + (1-y^{(i)})logleft(1- a^{[L](i)} ight)]}_ ext{cross-entropy cost} + underbrace{frac{lambda}{2} sumlimits_lsumlimits_ksumlimits_j W_{k,j}^{[l]2} }_ ext{L2 regularization cost}$$

    Dropout

                 网络的训练过程和文章神经网络介绍:算法基础中的基本一致,不同的是Dropout在每次迭代过程中随机关掉一些神经元,

                 对矩阵$A^{[l]}$,有对应的开关矩阵$D^{[l]}$,生成$D^{[l]}$的代码如下所示:

    ### 伪代码
    Dl = np.random.rand(Al.shape[0], Al.shape[1])     # Step 1: initialize matrix D1 = np.random.rand(..., ...)
    Dl = (Dl<keep_prob)                               # Step 2: convert entries of D1 to 0 or 1 (using keep_prob as the threshold)

               (1)在前向传播过程中按上述文章中的公式计算出$A^{[l]}$后还需要额外进行处理:$$A^{[l]}=A^{[l]}*D^{[l]} ext{, }A^{[l]}=A^{[l]}/keep\_prob$$

               (2)在后向传播过程中使用经过处理后的$A^{[l]}$进行计算,并且按文章中的公式计算出$dA^{[l]}$后还需要额外进行处理:$$dA^{[l]}=dA^{[l]}*D^{[l]} ext{, }dA^{[l]}=dA^{[l]}/keep\_prob$$

               (3)需要注意的是在使用网络进行验证或预测时不要使用Dropout(即将keep_prob设为1)

  • 相关阅读:
    Spring Cloud Ribbon实现客户端负载均衡
    Spring Boot 初步小结
    日志配置
    外部属性文件的使用
    运行jar
    类型安全的配置文件
    java动态代理中的invoke方法是如何被自动调用的(转)
    数据库为什么要用B+树结构--MySQL索引结构的实现(转)
    Java transient关键字使用小记(转)
    面试题思考:Java 8 / Java 7 为我们提供了什么新功能
  • 原文地址:https://www.cnblogs.com/sunwq06/p/10900093.html
Copyright © 2011-2022 走看看