zoukankan      html  css  js  c++  java
  • 强化学习基础:蒙特卡罗和时序差分

    这篇文章承接文章强化学习基础:基本概念和动态规划,介绍另外两种解决强化学习问题的方法

    求解方法:Monte Carlo

    • 问题一(左图):estimate the state-value function $v_{pi}$ corresponding to a policy $pi$
      • First-visit MC estimates  $v_{pi}(s)$ as the average of the returns following only first visits to $s$ (ignores returns that are associated to later visits)
      • Every-visit MC estimates  $v_{pi}(s)$ as the average of the returns following all visits to $s$
    • 问题二(右图):estimate the action-value function $q_{pi}$ corresponding to a policy $pi$
      • First-visit MC estimates  $q_{pi}(s,a)$ as the average of the returns following only first visits to $s,a$
      • Every-visit MC estimates  $q_{pi}(s,a)$ as the average of the returns following all visits to $s,a$

    • 问题三(左图):get the optimal policy $pi_*$
      • relationship between the mean and individual return: $ar{Q}_k=frac{sum_{i=1}^kG_i}{k}=ar{Q}_{k-1}+frac{1}{k}(G_k-ar{Q}_{k-1})$
      • $epsilon$-greedy:  Exploration vs Exploitation
        • with probability $1-epsilon$, select the greedy action ${pi}(s)=arg max _{a in mathcal{A}(s)} Q(s, a)$ (Exploitation)
        • with probability $epsilon$, select an action (uniformly) at random ${pi}(a|s)=frac{1}{|mathcal{A}(s)|}$ (Exploration)  
    • 问题四(右图):modify the algorithm to put more weights to the most recent returns 

    求解方法:Temporal Difference

    Monte Carlo (MC) prediction methods must wait until the end of an episode to update the value function estimate, temporal-difference (TD) methods update the value function after every time step.

    • 问题一(左图):estimate the state-value function $v_{pi}$ (the estimation of $q_{pi}$ is similar)
    • 问题二(右图):get the optimal action value function $q_*$
      • On policy: the agent interact with the environment by following the same policy $pi$ that it seeks to evaluate (or improve)
      • Sarsa(0) is an on-policy method

    • 问题三:modified algorithm to get the optimal action value function $q_*$
      • Off poliy: the agent interact with the environment by following a policy $b$ that is different from the policy $pi$ that it seeks to evaluate (or improve)
      • Sarsamax(i.e., Q-learning) is an off-policy method

    • 问题四:another modified algorithm to get the optimal action value function $q_*$
      • Expected Sarsa is an on-policy method
      • $pi(a|S_{t+1})$ is derived from $Q$ (e.g., $epsilon$-greedy)



  • 相关阅读:
    实用机器人设计(六)-建图,导航和路径规划
    实用机器人设计(五)-机器人电机功率选择和减速箱传动比设计
    实用机器人设计(四)-电机和驱动系统基础原理
    实用机器人设计(三)-计算机视觉
    Git 提交文件到Github
    爬虫框架Scrapy
    scrapy终端与核心组件
    图像识别与文字处理
    存储爬虫数据--Mongodb
    并发下载
  • 原文地址:https://www.cnblogs.com/sunwq06/p/11084512.html
Copyright © 2011-2022 走看看