zoukankan      html  css  js  c++  java
  • R in action -- chapter 7

    mycars <- c("mpg",'hp','wt')
    head(mtcars[mycars])
    summary(mtcars[mycars])
    
    mystats <- function(x,na.omit=FALSE){   #偏度峰度
      if (na.omit)
        x <- x[!is.na(x)]
      m <- mean(x)
      n <- length(x)
      s <- sd(x)
      skew <- sum((x-m)^3/s^3)/n
      kurt <- sum((x-m)^4/s^4)/n - 3
      return(c(n=n,mean=m,stdev=s,skew=skew,kurtosis=kurt))
    }
    sapply(mtcars[mycars], mystats)
    sapply(mtcars[mycars], mystats,na.omit=T)
    
    install.packages('Hmisc')
    library(Hmisc)
    describe(mtcars[mycars])
    
    library(pastecs)
    # stat.desc(x,basic=T,desc=T,norm=F,p=0.95)
    stat.desc(mtcars[mycars])
    
    library(psych)
    describe(mtcars[mycars])
    
    head(mtcars)
    aggregate(mtcars[mycars],by=list(am=mtcars$am),mean) #分组 描述
    aggregate(mtcars[mycars],by=list(am=mtcars$am),sd)
    
    dstats <- function(x)sapply(x,mystats)
    a <- by(mtcars[mycars],mtcars$am,dstats)
    
    
    library(doBy)
    summaryBy(mpg+hp+wt~am,data=mtcars,FUN=mystats)
    
    
    library(psych)
    describeBy(mtcars[mycars],list(am=mtcars$am))
    
    
    library(vcd)
    head(Arthritis)
    
    table(Arthritis$Treatment,Arthritis$Improved)
    with(Arthritis,table(Treatment,Improved))
    mytable <- xtabs(~Treatment+Improved,data = Arthritis)
    with(Arthritis,xtabs(~Treatment+Improved,data = Arthritis))
    
    margin.table(mytable,2) # sum by row
    prop.table(mytable,2)  #proportion by column
    prop.table(mytable)  #proportion by total
    
    addmargins(mytable)
    addmargins(mytable,1)
    addmargins(prop.table(mytable,2),1)
    
    
    library(gmodels)
    a <- CrossTable(Arthritis$Treatment,Arthritis$Improved) ##SAS format
    
    mytable <- xtabs(~Treatment+Improved,data = Arthritis)
    chisq.test(mytable)
    
    mytable <- xtabs(~Sex+Improved,data = Arthritis)
    chisq.test(mytable)
    fisher.test(mytable)
    
    mytable <- xtabs(~Treatment+Improved+Sex,data = Arthritis)
    mantelhaen.test(mytable)
    
    mytable <- xtabs(~Sex+Improved,data = Arthritis)
    assocstats(mytable)
    
    head(state.x77)
    states <- state.x77[,1:6]
    cov(states)
    cor(states)
    cor(states,method = 'spearman')
    
    x <- states[,c('Population','Income','Illiteracy','HS Grad')]
    y <- states[,c('Life Exp','Murder')]
    cor(x,y)
    
    #partial correlation
    library(ggm)
    colnames(states)
    pcor(c(1,5,2,3,6),cov(states))  # convarice between first variables(1 and 5)
    
    cor.test(states[,3],states[,5])
    
    library(psych)
    corr.test(states,use='complete')
    
    library(MASS)
    head(UScrime)
    t.test(Prob~So, data = UScrime)
    
    sapply(UScrime[c('U1','U2')], function(x)c(mean=mean(x), sd=sd(x)))
    
    with(UScrime,t.test(U1,U2,paired = T))
    
    #nonparameter
    with(UScrime,by(Prob,So,mean))
    wilcox.test(Prob~So,data = UScrime)
    
    sapply(UScrime[c('U1','U2')], median)
    with(UScrime,wilcox.test(U1,U2,paired = T))
    
    states <- data.frame(state.region,state.x77)
    kruskal.test(Illiteracy~state.region,data=states)
    
    source("http://www.statemethods.net/RiA/wmx.txt")
    wmc(Illiteracy~state.region,state.x77)
    

      

    Valar morghulis
  • 相关阅读:
    Java多线程系列--“JUC集合”08之 LinkedBlockingQueue
    Java多线程系列--“JUC集合”07之 ArrayBlockingQueue
    Java多线程系列--“JUC集合”06之 ConcurrentSkipListSet
    Java多线程系列--“JUC集合”05之 ConcurrentSkipListMap
    Java多线程系列--“JUC集合”04之 ConcurrentHashMap
    Java多线程系列--“JUC集合”03之 CopyOnWriteArraySet
    Java多线程系列--“JUC集合”02之 CopyOnWriteArrayList
    Java多线程系列--“JUC集合”01之 框架
    Java多线程系列--“JUC锁”11之 Semaphore信号量的原理和示例
    Java多线程系列--“JUC锁”10之 CyclicBarrier原理和示例
  • 原文地址:https://www.cnblogs.com/super-yb/p/11365662.html
Copyright © 2011-2022 走看看