zoukankan      html  css  js  c++  java
  • R in action -- chapter 8

    rm(list = ls())
    fit <- lm(weight ~ height, women)
    summary(fit)
    women$weight
    fitted(fit)
    confint(fit)
    residuals(fit)
    with(women,plot(height,weight,
                    xlab = "height (in inches)",
                    ylab = "weight (in pounds)"))
    abline(fit)
    
    fit2 <- lm(weight ~ height + I(height^2), women)
    summary(fit2)
    with(women,plot(height,weight,
                    xlab = "height (in inches)",
                    ylab = "weight (in pounds)"))
    lines(women$height,fitted(fit2))
    
    library(car)
    scatterplot(weight ~ height, data = women,
                spread = FALSE, smoother.agrs=list(lty=2),pch = 20,
                main = "women age 30 - 39",
                xlab = "height (inches)",
                ylab = "weight (lbs.)")
    
    states <- as.data.frame(state.x77[,c("Murder","Population","Illiteracy","Income","Frost")])
    cor(states)
    library(car)
    scatterplotMatrix(states)
    
    fit <- lm(Murder~Population+Illiteracy+Income+Frost,states)
    summary(fit)
    coefficients(fit)
    confint(fit)
    
    fit <- lm(mpg~hp+wt+hp:wt,mtcars)
    summary(fit)
    
    # interpretation about interaction
    library(effects)
    plot(effect("hp:wt",fit,,list(wt=c(2.2,3.2,4.2))),multiline=T)
    
    fit <- lm(weight ~ height, women)
    par(mfrow=c(2,2))
    plot(fit)
    
    
    fit <- lm(weight ~ height + I(height^2), women)
    par(mfrow=c(2,2))
    plot(fit)
    
    newfit  <- lm(weight~ height + I(height^2), data= women[-c(13,15),])
    par(mfrow=c(2,2))
    plot(newfit)
    
    states <- as.data.frame(state.x77[,c("Murder","Population","Illiteracy","Income","Frost")])
    fit <- lm(Murder~Population+Illiteracy+Income+Frost,states)
    par(mfrow=c(2,2))
    plot(fit)
    
    par(mfrow=c(1,1))
    qqPlot(fit,lables=row.names(states),id.method= "identify",
           simulate=T, main = "Q-Q plot")
    
    states["Nevada",]
    fitted(fit)["Nevada"]
    residuals(fit)['Nevada']
    rstudent(fit)["Nevada"]
    
    
    residualplot <- function(fit, nbreaks= 10){
      z <- rstudent(fit)
      hist(z, breaks= nbreaks, freq = F, 
           xlab = "Studentized residual",
           main= "Distribution of errors")
      rug(jitter(z),col="brown")
      curve(dnorm(x,mean=mean(z),sd=sd(z)),
            add=T, col="blue",lwd= 2)
      lines(density
            (z)$x,density(z)$y,
            col= "red",lwd= 2,lty= 2)
      legend("topright",
             legend = c("normal curve","kernel density curve"),
             lty= 1:2,col=c("blue","red"),cex=.7)
    }
    residualplot(fit)
    
    library(car)
    durbinWatsonTest(fit)
    
    crPlots(fit)
    
    ncvTest(fit)
    
    spreadLevelPlot(fit)
    
    library(gvlma)
    gvmodel <- gvlma(fit)
    summary(gvmodel)
    vif(fit)
    
    library(car)
    outlierTest(fit)
    n <- 50
    hat.plot <- function(fit){
      p <- length(coefficients(fit))
      n <- length(fitted(fit))
      plot(hatvalues(fit),main= "Index Plot of hat values")
      abline(h=c(2,3)*p/n,col= "red", lty= 2)
      identify(1:n, hatvalues(fit), names(hatvalues(fit)))
    }
    hat.plot(fit)
    
    cutoff <- 4/(nrow(states)-length(fit$coefficients)-2)
    plot(fit,which = 4,cook.levels = cutoff)
    abline(h=cutoff, lty=2,col="red")
    
    library(car)
    avPlots(fit,ask= FALSE, id.method ='identify')
    ls("package:car")
    
    influencePlot(fit,id.method="identify", main="Influence plot",
                  sub="circle size is proportional to cook's distance")
    
    states <- as.data.frame(state.x77[,c("Murder","Population","Illiteracy","Income","Frost")])
    fit1 <- lm(Murder~Population+Illiteracy+Income+Frost,states)
    fit2 <- lm(Murder~ Population+ Illiteracy +Income , data= states)
    anova(fit2,fit1)
    AIC(fit1,fit2)
    
    library(MASS)
    states <- as.data.frame(state.x77[,c("Murder","Population","Illiteracy","Income","Frost")])
    fit <- lm(Murder~Population+Illiteracy+Income+Frost,states)
    stepAIC(fit,direction = "backward")
    
    library(leaps)
    states <- as.data.frame(state.x77[,c("Murder","Population","Illiteracy","Income","Frost")])
    leaps <- regsubsets(Murder ~ Population + Illiteracy +Income + Frost, states,nbest = 4)
    plot(leaps, scale = 'adjr2')
    
    library(car)
    subsets(leaps,statistic = "cp",
            main = "Cp plot for all subsets regression")
    abline(1,1,lty=2,col="red")
    

      

    Valar morghulis
  • 相关阅读:
    Undefined symbols for architecture armv7错误解决方法
    一个iOS 框架介绍:MKNetworkKit
    objective-c之各种数值
    利用openURL,在IOS应用中打开另外一个应用
    hackerrank---List Comprehensions
    LeetCode --- Plus One
    Vim学习与总结
    LeetCode --- Pascal's Triangle II
    LeetCode --- Gray Code
    LeetCode --- Two Sum
  • 原文地址:https://www.cnblogs.com/super-yb/p/11393498.html
Copyright © 2011-2022 走看看