zoukankan      html  css  js  c++  java
  • ST:(homework 3)Some problems about Graph Coverage

    题目的源代码如下:

     1 package cn.tju.scs.printPrime;
     2 
     3 public class Prime {
     4     public static int MAXPRIMES = 30000;
     5     public static boolean isDivisible(int a,int b){
     6         int c = b%a;
     7         if (c == 0){
     8             return true;
     9         }
    10         else {
    11             return false;
    12         }
    13     }
    14     public static void printPrimes(int n){
    15         int curPrime;
    16         int numPrimes;
    17         boolean isPrime;
    18         int[] primes = new int [MAXPRIMES];
    19         
    20         primes[0] = 2;
    21         numPrimes = 1;
    22         curPrime = 2;
    23         while(numPrimes < n){
    24             curPrime++;
    25             isPrime = true;
    26             for(int i = 0; i <= numPrimes - 1; i++){
    27                 if(isDivisible(primes[i],curPrime)){
    28                     isPrime = false;
    29                     break;
    30                 }
    31             }
    32             if(isPrime){
    33                 primes[numPrimes] = curPrime;
    34                 numPrimes++;
    35             }
    36         }
    37         
    38         for(int i = 0; i <= numPrimes -1; i++){
    39             System.out.println("Primes: " + primes[i]);
    40         }
    41         
    42     }
    43     
    44     
    45 
    46 }

    问题:

    1、以上源代码的控制流图如下:

    2、当把下面判断是不是素数的代码中的for的条件改成for(int i = 0; i <= 0 ; i++)是代码如下

    for(int i = 0; i <= 0; i++){
      if(isDivisible(primes[i],curPrime)){
      isPrime = false;
      break;
      }
    }

    这样每次只判断是不是偶数,当t1 = (n = 3)时,算出的素数为2、3、5所得到的结果并没有发现错误;然而当t2 = (n = 5)时,所得的结果为2、3、5、7、9,我们能够看出所得的结果是错误的,所以能够检查出错误。所以测试用例有力相同的主路径,并不一定找出相同的错误。

    3、当 n= 1时,是相应的测试路径访问连接While语句开始到for语句的边,而不通过while的循环体。

    4、

    节点覆盖:TR{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}

    边覆盖: TR{(1,2),(2,3),(3,5),(5,6),(6,7),(7,8),(7,9),(9,6),(6,10),(8,10),(10,11),(11,12),(12,13),(11,13),(13,2),(2,4),(4,14),(14,15),(15,14),(14,16)}

    主路径覆盖:TR:

             [1,2,3,5,6,7,9]

             [1,2,3,5,6,7,8,10,11,12,13]

            [1,2,3,5,6,7,8,10,11,13]

             [1,2,3,5,6,10,11,12,13]

              [1,2,3,5,6,7,8,10,11,13]

               [2,3,5,6,7,8,10,11,12,13,2]

             [2,3,5,6,7,8,10,11,13,2]

             [2,3,5,6,10,11,12,13,2]

               [2,3,5,6,7,8,10,11,13,2]

               [1,2,4,14,15]

            [1,2,4,14,16]

            [6,7,9,6]

                              [14,15,14]

                             [3,5,6,7,8,10,11,12,13,2,4,14,15]

             [3,5,6,7,8,10,11,13,2,4,14,15]

               [3,5,6,10,11,13,2,4,14,15]

                             [3,5,6,10,11,12,13,2,4,14,15]

             [7,9,6,7,8,10,11,12,13,2,4,14,15]

             [7,9,6,7,8,10,11,13,2,4,14,15]

              [7,9,6,10,11,13,2,4,14,15]

                              [7,9,6,10,11,12,13,2,4,14,15]

              [3,5,6,7,8,10,11,12,13,2,4,14,16]

             [3,5,6,7,8,10,11,13,2,4,14,16]

              [3,5,6,10,11,13,2,4,14,16]

                           [3,5,6,10,11,12,13,2,4,14,16]

            [7,9,6,7,8,10,11,12,13,2,4,14,16]

             [7,9,6,7,8,10,11,13,2,4,14,16]

              [7,9,6,10,11,13,2,4,14,16]

                              [7,9,6,10,11,12,13,2,4,14,16]

                              [15,14,16]

                              [2,3,5,6,7,8,10,11,12,13,2]

                              [3,5,6,7,8,10,11,12,13,2,3]

              [5,6,7,8,10,11,12,13,2,3,5]

                [6,7,8,10,11,12,13,2,3,5,6]

                                 [7,8,10,11,12,13,2,3,5,6,7]

                                  [8,10,11,12,13,2,3,5,6,7,8]

                                  [10,11,12,13,2,3,5,6,7,8,10]

                    [11,12,13,2,3,5,6,7,8,10,11]

                   [12,13,2,3,5,6,7,8,10,11,12]

                   [13,2,3,5,6,7,8,10,11,12,13]

                              [2,3,5,6,7,8,10,11,13,2]

              [3,5,6,7,8,10,11,13,2,3]

                                 [5,6,7,8,10,11,13,2,3,5]

               [6,7,8,10,11,13,2,3,5,6]

               [7,8,10,11,13,2,3,5,6,7]

               [8,10,11,13,2,3,5,6,7,8]

               [10,11,13,2,3,5,6,7,8,10]

               [11,13,2,3,5,6,7,8,10,11]

               [13,2,3,5,6,7,8,10,11,13]

                [2,3,5,6,10,11,12,13,2]

                  [3,5,6,10,11,12,13,2,3]

              [5,6,10,11,12,13,2,3,5]

              [6,10,11,12,13,2,3,5,6]

              [10,11,12,13,2,3,5,6,10]

              [11,12,13,2,3,5,6,10,11]

              [12,13,2,3,5,6,10,11,12]

              [13,2,3,5,6,10,11,12,13]

               [2,3,5,6,7,8,10,11,13,2]

              [3,5,6,7,8,10,11,13,2,3]

              [5,6,7,8,10,11,13,2,3,5]

              [6,7,8,10,11,13,2,3,5,6]

              [7,8,10,11,13,2,3,5,6,7]

              [8,10,11,13,2,3,5,6,7,8]

              [10,11,13,2,3,5,6,7,8,10]

              [11,13,2,3,5,6,7,8,10,11]

              [13,2,3,5,6,7,8,10,11,13]

              [6,7,9,6]

              [7,9,6,7]

              [9,6,7,9]      

                                [14,15,14]

              [15,14,15]

    5、测试方法的实现

     1 package cn.tju.scs.printPrime;
     2 
     3 import static org.junit.Assert.*;
     4 
     5 import org.junit.Before;
     6 import org.junit.Test;
     7 
     8 public class PrimeTest {
     9      
    10     @Before
    11     public void setUp() throws Exception {
    12     }
    13 
    14     @Test
    15     public void test() {
    16         Prime.printPrimes(3);
    17         Prime.printPrimes(4);
    18         Prime.printPrimes(1);
    19         Prime p = new Prime();
    20     }
    21 
    22 }
    View Code

    测试效果如下图所示:

  • 相关阅读:
    CF1082E Increasing Frequency
    CF1083B The Fair Nut and String
    week2
    CF1082G Petya and Graph
    后缀数组学习笔记
    单纯形法
    验证rbd的缓存是否开启
    如何删除一台OSD主机
    Mon失效处理方法
    查询osd上的pg数
  • 原文地址:https://www.cnblogs.com/superjn/p/5338277.html
Copyright © 2011-2022 走看看